TY - JOUR
T1 - Inflammatory cytokines and lipopolysaccharide induce fas-mediated apoptosis in renal tubular cells
AU - Jo, Sang Kyung
AU - Cha, Dae Ryong
AU - Cho, Won Yong
AU - Kim, Hyoung Kyu
AU - Chang, Kyung Hyun
AU - Yun, Su Young
AU - Won, Nam Hee
PY - 2002
Y1 - 2002
N2 - Background/Aims: Increased susceptibility of the kidney to acute renal failure (ARF) in the setting of sepsis even in the absence of systemic hypotension is well known. In the hypothesis that the proinflammatory cytokines and lipopolysaccharide (LPS) in gram-negative sepsis can directly cause renal tubular cell apoptosis via Fas- and caspase-mediated pathways, we examined apoptosis and Fas, Fas ligand, FADD expression, as well as PARP cleavage in cultured human proximal tubular cells under the cytokine and LPS-stimulated conditions. Methods: HK-2 cell, immortalized human proximal tubular cell lines, were treated with 5 and 30 ng/ml of tumor necrosis factor-α (TNF-α), 5 and 20 ng/ml of interleukin-1β (IL-1β) and 30 ng/ml LPS for 24 h. Fas expression was examined by RT-PCR and Fas ligand, Fas-associated protein with death domain (FADD) and poly ADP ribose polymerase (PARP) cleavage were examined by Western blot analysis. Apoptosis was assessed by flow cytometer using Annexin V-FITC and propidium iodide (PI) staining and also by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) methods. Results: Fas mRNA expression (ratio of Fas/L-19) increased in the TNF-α 5, 30 ng/ml and LPS treated group (p < 0.01, p < 0.01, p = 0.02), but there was no difference between the low- and high-dose TNF-α groups. Fas ligand protein expression did not increase in the low-dose TNF-α treated group, but it increased significantly in the high-dose TNF-α treated group (p < 0.01), IL-1β- and LPS-treated groups (p < 0.01, p = 0.01, p < 0.01, p = 0.02). The intracellular adaptor protein, FADD expression also increased significantly in the high-dose TNF-α- and IL-β-treated groups (p = 0.04, p = 0.04), but in the low-dose TNF-α and IL-β treated group, it did not show statistically significant differences. In the LPS group, FADD expression also showed an increased tendency, but it was not statistically significant (p = 0.09). Western blot for PARP, a DNA repair enzyme mainly cleaved by caspase 3, showed increased 89- and 24-kD PARP cleavage products in TNF-α, IL-1β and LPS treated cells. The degree of apoptosis examined by DNA fragmentation and translocation of membrane phosphatidyl serine significantly increased in cytokines and LPS treated groups. Conclusion: These results suggest that Fas- and caspase-mediated apoptosis of tubular cells by inflammatory cytokines and LPS can be one of the possible mechanisms of renal dysfunction in endotoxemia.
AB - Background/Aims: Increased susceptibility of the kidney to acute renal failure (ARF) in the setting of sepsis even in the absence of systemic hypotension is well known. In the hypothesis that the proinflammatory cytokines and lipopolysaccharide (LPS) in gram-negative sepsis can directly cause renal tubular cell apoptosis via Fas- and caspase-mediated pathways, we examined apoptosis and Fas, Fas ligand, FADD expression, as well as PARP cleavage in cultured human proximal tubular cells under the cytokine and LPS-stimulated conditions. Methods: HK-2 cell, immortalized human proximal tubular cell lines, were treated with 5 and 30 ng/ml of tumor necrosis factor-α (TNF-α), 5 and 20 ng/ml of interleukin-1β (IL-1β) and 30 ng/ml LPS for 24 h. Fas expression was examined by RT-PCR and Fas ligand, Fas-associated protein with death domain (FADD) and poly ADP ribose polymerase (PARP) cleavage were examined by Western blot analysis. Apoptosis was assessed by flow cytometer using Annexin V-FITC and propidium iodide (PI) staining and also by terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) methods. Results: Fas mRNA expression (ratio of Fas/L-19) increased in the TNF-α 5, 30 ng/ml and LPS treated group (p < 0.01, p < 0.01, p = 0.02), but there was no difference between the low- and high-dose TNF-α groups. Fas ligand protein expression did not increase in the low-dose TNF-α treated group, but it increased significantly in the high-dose TNF-α treated group (p < 0.01), IL-1β- and LPS-treated groups (p < 0.01, p = 0.01, p < 0.01, p = 0.02). The intracellular adaptor protein, FADD expression also increased significantly in the high-dose TNF-α- and IL-β-treated groups (p = 0.04, p = 0.04), but in the low-dose TNF-α and IL-β treated group, it did not show statistically significant differences. In the LPS group, FADD expression also showed an increased tendency, but it was not statistically significant (p = 0.09). Western blot for PARP, a DNA repair enzyme mainly cleaved by caspase 3, showed increased 89- and 24-kD PARP cleavage products in TNF-α, IL-1β and LPS treated cells. The degree of apoptosis examined by DNA fragmentation and translocation of membrane phosphatidyl serine significantly increased in cytokines and LPS treated groups. Conclusion: These results suggest that Fas- and caspase-mediated apoptosis of tubular cells by inflammatory cytokines and LPS can be one of the possible mechanisms of renal dysfunction in endotoxemia.
KW - Apoptosis
KW - Fas
KW - Fas ligand
KW - Interleukin-1-beta
KW - Lipopolysaccharide
KW - Renal tubular cell
KW - Tumor necrosis factor-alpha
UR - http://www.scopus.com/inward/record.url?scp=0036654765&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036654765&partnerID=8YFLogxK
U2 - 10.1159/000064280
DO - 10.1159/000064280
M3 - Article
C2 - 12119470
AN - SCOPUS:0036654765
SN - 0028-2766
VL - 91
SP - 406
EP - 415
JO - Nephron
JF - Nephron
IS - 3
ER -