Influence of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of polycarbonate/poly(lactic acid)/ LA-g-MWCNT composites

Myung Geun Jang, Yun Kyun Lee, Woo Nyon Kim

    Research output: Contribution to journalArticlepeer-review

    22 Citations (Scopus)

    Abstract

    The effects of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of the polycarbonate (PC)/poly(lactic acid) (PLA)/LA-g-MWCNT composite were studied. To increase dispersion of the conductive filler in the PC/PLA (70/30) blend, chemically-modified MWCNT, which is LA-g-MWCNT, was used as a compatibilizer between the conductive filler and polymers. For the PC/PLA/LA-g-MWCNT composite, the increased values of the electrical conductivity, electromagnetic interference shielding effectiveness, and complex viscosity were observed compared to those of PC/PLA/MWCNT composite. The results suggested that the increased dispersion of the LA-g-MWCNT in the PC/PLA (70/30) blend is caused by increased connectivity of the MWCNT-MWCNT network structure of the composite. The interfacial tension of the PLA/ MWCNT composite was lower than that of the PC/MWCNT composite. The lower value of interfacial tension of the PLA/MWCNT composite affected the dispersion of the MWCNT in the PLA phase (dispersed phase) more than in the PC phase (continuous phase). After hydrolysis, the PC/PLA/LA-g-MWCNT composite showed higher electrical conductivity than the PC/PLA/MWCNT composites. As a result, it is suggested that the increased dispersion of the LA-g-MWCNT in the PC/PLA blend has affected the increase in the electrical conductivity and lowering of the hydrolytic degradation of the PC/PLA/LA-g-MWCNT composite compared to the PC/PLA/MWCNT composite.[Figure not available: see fulltext.]

    Original languageEnglish
    Pages (from-to)916-923
    Number of pages8
    JournalMacromolecular Research
    Volume23
    Issue number10
    DOIs
    Publication statusPublished - 2015 Oct 1

    Bibliographical note

    Publisher Copyright:
    © 2015, The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht.

    Keywords

    • carbon nanotube
    • electrical conductivity
    • poly(lactic acid)
    • polymer blend
    • polymer composite
    • rheology

    ASJC Scopus subject areas

    • General Chemical Engineering
    • Organic Chemistry
    • Polymers and Plastics
    • Materials Chemistry

    Fingerprint

    Dive into the research topics of 'Influence of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of polycarbonate/poly(lactic acid)/ LA-g-MWCNT composites'. Together they form a unique fingerprint.

    Cite this