Abstract
In this study, the influences of the flow cut and axial lift of the impeller on the aerodynamic performance of a transonic centrifugal compressor were analyzed. The flow cut is a method to reduce the flow rate by decreasing the impeller passage height. The axial lift is a method of increasing the impeller passage height in the axial direction, which increases the impeller exit width (B2) and increases the total pressure. A NASA CC3 transonic centrifugal compressor with a backswept angle was used as a base compressor. After applying the flow cut, the total pressure at the target flow rate was lower than the total pressure at the design point due to the increase in the relative velocity at the impeller exit. After applying the axial lift, the total pressure at the design flow rate was increased, which was caused by the reduction in the relative velocity as the passage area at the impeller exit was increased. By applying the flow cut and axial lift methods, it was shown that the variation in relative velocity at the impeller exit has a significant effect on the variation in total pressure. In addition, it was found that the relative velocity at the impeller exit of the target flow rate is maintained similar to the base impeller when the flow cut and the axial lift are combined. Therefore, by combining the flow cut and the axial lift, three transonic centrifugal impellers with flow fractions of 0.7, 0.8, and 0.9 compared to the design flow rate were newly designed.
Original language | English |
---|---|
Article number | 4503 |
Journal | Energies |
Volume | 12 |
Issue number | 23 |
DOIs | |
Publication status | Published - 2019 Nov 27 |
Bibliographical note
Publisher Copyright:© 2019 by the authors
Keywords
- Aerodynamic design
- Axial lift
- Backswept angle
- Flow cut
- Impeller
- Relative velocity
- Transonic centrifugal compressor
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering