InGaZnO transistor based on porous Ag nanowire-functionalized gate electrode for detection of bio-relevant molecules

Tae Hee Yoo, Hi Gyu Moon, Byung Yong Wang, Byoung In Sang, Basavaraj Angadi, Young Jei Oh, Won Kook Choi, Chong Yun Kang, Do Kyung Hwang

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


We report on InGaZnO (IGZO) thin film transistors (TFTs)-based bio-chemical sensors which can detect the chemical/biological species. As novel sensing platform, the IGZO TFT with Ag nanowire (NW) mesh showed pronounced output voltage changes responding to all analytes of H2O2, b-D-glucose, D-glucono-1,5-Lactione, and lactic acid, which are reproducible and reversible. Herein, porous Ag NW-functionalized top gate electrode plays a major role in sensing platform for enhanced sensing capability in aqueous medium. Moreover, these top gate geometry serve as a stable backplane for electrical modulation. As a result, analytes solutions become acidic or basic and such pH alterations induce significant turn-on voltage shifts on our devices. For implementation of a resistive load inverter, the output sensing voltage signals can be directly extracted, and such signals are reproducible and reversible. The proposed IGZO TFTs with Ag NW mesh top gate electrode based sensing platform pave the way for development of portable and reusable real-time non-destructive label-free chemical/biological sensors.

Original languageEnglish
Pages (from-to)36-43
Number of pages8
JournalSensors and Actuators, B: Chemical
Publication statusPublished - 2018


  • Ag nanowire
  • Chemical/biological sensing platform
  • InGaZnO semiconductor

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry


Dive into the research topics of 'InGaZnO transistor based on porous Ag nanowire-functionalized gate electrode for detection of bio-relevant molecules'. Together they form a unique fingerprint.

Cite this