Abstract
The aim of this study was to investigate the ability of hinokitiol to inhibit the formation of Candida biofilms. Biofilm inhibition was evaluated by quantification of the biofilm metabolic activity with XTT assay. Hinokitiol efficiently prevented biofilm formation in both fluconazole-susceptible and fluconazole-resistant strains of Candida species. We determined the expression levels of specific genes previously implicated in biofilm development of C. albicans cells by realtime RT-PCR. The expression levels of genes associated with adhesion process, HWP1 and ALS3, were downregulated by hinokitiol. Transcript levels of UME6 and HGC1, responsible for long-Term hyphal maintenance, were also decreased by hinokitiol. The expression level of CYR1, which encodes the component of signaling pathway of hyphal formation-cAMP-PKA was suppressed by hinokitiol. Its upstream general regulator RAS1 was also suppressed by hinokitiol. These results indicate that hinokitiol may have therapeutic potential in the treatment and prevention of biofilm-Associated Candida infections.
Original language | English |
---|---|
Article number | e0171244 |
Journal | PloS one |
Volume | 12 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2017 Feb |
Bibliographical note
Funding Information:This research was supported by a grant from Korea University (K1508301)
Publisher Copyright:
© 2017 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)
- General