Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis

Bo Bae Seo, Youngjoong Kwon, Jun Kim, Ki Hyun Hong, Sung Eun Kim, Hae Ryong Song, Young Min Kim, Soo Chang Song

Research output: Contribution to journalArticlepeer-review

66 Citations (Scopus)

Abstract

Treatment of osteoarthritis (OA) by administration of corticosteroids is a commonly used method in clinics using anti-inflammatory medicine. Oral administration or intra-articular injection of corticosteroids can reduce the pain and progress of cartilage degeneration, but they are usually insufficient to show local and long-term anti-inflammatory effects because of their fast clearance in the body. In this study, we suggest an injectable anti-OA drug depot system for sustained drug release that provides long-term effective therapeutic advantages. Amphiphilic poly(organophosphazene), which has temperature-dependent nanoparticle forming and sol-gel transition behaviors when dissolved in aqueous solution, was synthesized for triamcinolone acetonide (TCA) delivery. Because hydrophobic parts of the polymer can interact with hydrophobic parts of the TCA, the TCA was encapsulated into the self-assembled polymeric nanoparticles. The TCA-encapsulated polymeric nanoparticles (TePNs) were well dispersed in an aqueous solution below room temperature so that they can be easily injected as a sol state into an intra-articular region. However, the TePNs solution transforms immediately to a viscose 3D hydrogel like a synovial fluid in the intra-articular region via the conducted body temperature. An in vitro TCA release study showed sustained TCA release for six weeks. One-time injection of the TePN hydrogel system in an early stage of OA-induced rat model showed a great inhibition effect against further OA progression. The OA-induced knees completely recovered as a healthy cartilage without any abnormal symptoms.

Original languageEnglish
Pages (from-to)14-25
Number of pages12
JournalBioactive Materials
Volume7
DOIs
Publication statusPublished - 2022 Jan

Bibliographical note

Publisher Copyright:
© 2021 The Authors

Keywords

  • Osteoarthritis
  • Polymer nanoparticle
  • Sustained release
  • Thermosensitive hydrogel
  • Triamcinolone acetonide

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Injectable polymeric nanoparticle hydrogel system for long-term anti-inflammatory effect to treat osteoarthritis'. Together they form a unique fingerprint.

Cite this