Abstract
This article investigates the input-output finite-time stability (IO-FTS) for nonlinear hidden semi-Markov switching systems (S-MSSs) via the asynchronous sliding mode control (SMC) approach. Under the assumption that a detector is set up to estimate the mode value, the mode of the original system is not directly accessible. The asynchrony between the system and controller is described as a hidden semi-Markov model (HSMM). Many practical factors, such as semi-Markov switching parameters, finite-time interval, asynchronous phenomenon, uncertain parameters, and nonlinearity, are taking into account during the SMC design process. We aim to design an efficient finite-time asynchronous SMC scheme under a hidden semi-Markov switching effect. A novel sliding switching surface (SSS) is constructed, in which the SMC law rises asynchronously with original S-MSSs. Then, by means of finite-time stability, an asynchronous SMC law is synthesized to guarantee that the associated hidden S-MSSs fulfill the reaching condition within a finite time. Furthermore, sufficient conditions are derived in view of the IO-FTS of sliding mode dynamics under the framework of a novel inequality lemma. Results are given for the application of this control design method to a single-link robot arm model (SLRAM).
Original language | English |
---|---|
Pages (from-to) | 5344-5353 |
Number of pages | 10 |
Journal | IEEE Transactions on Systems, Man, and Cybernetics: Systems |
Volume | 52 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2022 Aug 1 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
Keywords
- Asynchronous sliding mode control (SMC)
- hidden semi-Markov model (HSMM)
- single-link robot arm
- sliding switching surface (SSS)
ASJC Scopus subject areas
- Software
- Control and Systems Engineering
- Human-Computer Interaction
- Computer Science Applications
- Electrical and Electronic Engineering