TY - JOUR
T1 - Inspection of PN, CO2, and regulated gaseous emissions characteristics from a GDI vehicle under various real-world vehicle test modes
AU - Kim, Kangjin
AU - Chung, Wonyong
AU - Kim, Myungsoo
AU - Kim, Charyung
AU - Myung, Cha Lee
AU - Park, Simsoo
N1 - Funding Information:
Funding: This research was funded by the Ministry of Land, Infrastructure and Transportation of Korea. And the APC was funded by the Hyundai Motor Company. This study was supported by the Hyundai Motor Company for technical assistance.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
PY - 2020/5
Y1 - 2020/5
N2 - Although the chassis dynamometer type approval test considers real-world conditions, there are a few limitations to the experimental test environment that may affect gaseous or particulate emissions such as road conditions, traffic, decreasing tire pressure, or fluctuating ambient temperature. Furthermore, the real driving emission (RDE) test takes a long time, and it is too long to repeat under different experimental conditions. The National Institute of Environmental Research (NIER) test modes that reflect the driving pattern of Korea are not certification test modes, but can be used to evaluate the influence of traffic conditions because these modes consist of a total of 15 test modes that vary according to average speed. The use of the NIER #03, #09, and #13 modes as low-, medium-, and high-speed modes allow for gaseous and particulate emissions to be measured and analyzed. Additionally, the worldwide harmonized light-duty vehicle test procedure (WLTP), the certification mode of Europe, is used to test cycles to investigate the difference under cold- and hot-engine start conditions. The engine operating parameters are also measured to evaluate the relationships between the various test conditions and test cycles. The regulated and greenhouse gas levels decrease under various driving conditions, but the particle number (PN) emission level shows a different trend with gaseous emissions. While the PN and CO2 results dramatically increase when the air conditioner is on, tire pressure conditions show different PN size distributions: a large-sized PN fraction, which contains particles larger than 100 nm, increases and a sub-23 nm-sized PN fraction decreases. Under cold-start conditions in the WLTP modes, there are much higher PN emissions than that of an engine under hot-start conditions, and the sub-23-nm-sized PN fraction also increases.
AB - Although the chassis dynamometer type approval test considers real-world conditions, there are a few limitations to the experimental test environment that may affect gaseous or particulate emissions such as road conditions, traffic, decreasing tire pressure, or fluctuating ambient temperature. Furthermore, the real driving emission (RDE) test takes a long time, and it is too long to repeat under different experimental conditions. The National Institute of Environmental Research (NIER) test modes that reflect the driving pattern of Korea are not certification test modes, but can be used to evaluate the influence of traffic conditions because these modes consist of a total of 15 test modes that vary according to average speed. The use of the NIER #03, #09, and #13 modes as low-, medium-, and high-speed modes allow for gaseous and particulate emissions to be measured and analyzed. Additionally, the worldwide harmonized light-duty vehicle test procedure (WLTP), the certification mode of Europe, is used to test cycles to investigate the difference under cold- and hot-engine start conditions. The engine operating parameters are also measured to evaluate the relationships between the various test conditions and test cycles. The regulated and greenhouse gas levels decrease under various driving conditions, but the particle number (PN) emission level shows a different trend with gaseous emissions. While the PN and CO2 results dramatically increase when the air conditioner is on, tire pressure conditions show different PN size distributions: a large-sized PN fraction, which contains particles larger than 100 nm, increases and a sub-23 nm-sized PN fraction decreases. Under cold-start conditions in the WLTP modes, there are much higher PN emissions than that of an engine under hot-start conditions, and the sub-23-nm-sized PN fraction also increases.
KW - Carbon dioxide (CO)
KW - Driving conditions
KW - EEPS
KW - GDI
KW - NIER testing mode
KW - Particle number (PN)
UR - http://www.scopus.com/inward/record.url?scp=85085842058&partnerID=8YFLogxK
U2 - 10.3390/en13102581
DO - 10.3390/en13102581
M3 - Article
AN - SCOPUS:85085842058
SN - 1996-1073
VL - 13
JO - Energies
JF - Energies
IS - 10
M1 - 2581
ER -