Integration of reconfigurable microchannels into aligned three-dimensional neural networks for spatially controllable neuromodulation

Sohyeon Jeong, Hyun Wook Kang, So Hyun Kim, Gyu Sang Hong, Min Ho Nam, Jihye Seong, Eui Sung Yoon, Il Joo Cho, Seok Chung, Seokyoung Bang, Hong Nam Kim, Nakwon Choi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Anisotropically organized neural networks are indispensable routes for functional connectivity in the brain, which remains largely unknown. While prevailing animal models require additional preparation and stimulation-applying devices and have exhibited limited capabilities regarding localized stimulation, no in vitro platform exists that permits spatiotemporal control of chemo-stimulation in anisotropic three-dimensional (3D) neural networks. We present the integration of microchannels seamlessly into a fibril-aligned 3D scaffold by adapting a single fabrication principle. We investigated the underlying physics of elastic microchannels’ ridges and interfacial sol-gel transition of collagen under compression to determine a critical window of geometry and strain. We demonstrated the spatiotemporally resolved neuromodulation in an aligned 3D neural network by local deliveries of KCl and Ca2+ signal inhibitors, such as tetrodotoxin, nifedipine, and mibefradil, and also visualized Ca2+ signal propagation with a speed of ~3.7 μm/s. We anticipate that our technology will pave the way to elucidate functional connectivity and neurological diseases associated with transsynaptic propagation.

Original languageEnglish
Article numbereadf0925
JournalScience Advances
Volume9
Issue number10
DOIs
Publication statusPublished - 2023 Mar

Bibliographical note

Publisher Copyright:
Copyright © 2023 The Authors, some rights reserved;

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Integration of reconfigurable microchannels into aligned three-dimensional neural networks for spatially controllable neuromodulation'. Together they form a unique fingerprint.

Cite this