Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ

Carolyn E. Jordan, James H. Crawford, Andreas J. Beyersdorf, Thomas F. Eck, Hannah S. Halliday, Benjamin A. Nault, Lim Seok Chang, Jin Soo Park, Rokjin Park, Gangwoong Lee, Hwajin Kim, Jun Young Ahn, Seogju Cho, Hye Jung Shin, Jae Hong Lee, Jinsang Jung, Deug Soo Kim, Meehye Lee, Taehyoung Lee, Andrew WhitehillJames Szykman, Melinda K. Schueneman, Pedro Campuzano-Jost, Jose L. Jimenez, Joshua P. DiGangi, Glenn S. Diskin, Bruce E. Anderson, Richard H. Moore, Luke D. Ziemba, Marta A. Fenn, Johnathan W. Hair, Ralph E. Kuehn, Robert E. Holz, Gao Chen, Katherine Travis, Michael Shook, David A. Peterson, Kara D. Lamb, Joshua P. Schwarz

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)

Abstract

The Korea - United States Air Quality Study (May - June 2016) deployed instrumented aircraft and ground-based measurements to elucidate causes of poor air quality related to high ozone and aerosol concentrations in South Korea. This work synthesizes data pertaining to aerosols (specifically, particulate matter with aerodynamic diameters <2.5 micrometers, PM2.5) and conditions leading to violations of South Korean air quality standards (24-hr mean PM2.5 < 35 µg m-3). PM2.5 variability from AirKorea monitors across South Korea is evaluated. Detailed data from the Seoul vicinity are used to interpret factors that contribute to elevated PM2.5. The interplay between meteorology and surface aerosols, contrasting synoptic-scale behavior vs. local influences, is presented. Transboundary transport from upwind sources, vertical mixing and containment of aerosols, and local production of secondary aerosols are discussed. Two meteorological periods are probed for drivers of elevated PM2.5. Clear, dry conditions, with limited transport (Stagnant period), promoted photochemical production of secondary organic aerosol from locally emitted precursors. Cloudy humid conditions fostered rapid heterogeneous secondary inorganic aerosol production from local and transported emissions (Transport/Haze period), likely driven by a positive feedback mechanism where water uptake by aerosols increased gas-to-particle partitioning that increased water uptake. Further, clouds reduced solar insolation, suppressing mixing, exacerbating PM2.5 accumulation in a shallow boundary layer. The combination of factors contributing to enhanced PM2.5 is challenging to model, complicating quantification of contributions to PM2.5 from local versus upwind precursors and production. We recommend co-locating additional continuous measurements at a few AirKorea sites across South Korea to help resolve this and other outstanding questions: carbon monoxide/carbon dioxide (transboundary transport tracer), boundary layer height (surface PM2.5 mixing depth), and aerosol composition with aerosol liquid water (meteorologically-dependent secondary production). These data would aid future research to refine emissions targets to further improve South Korean PM2.5 air quality.

Original languageEnglish
Article number28
JournalElementa
Volume8
DOIs
Publication statusPublished - 2020 Jul 1

Bibliographical note

Publisher Copyright:
Copyright: © 2020 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Keywords

  • Aerosols
  • Air quality
  • KORUS-AQ
  • PM
  • South Korea

ASJC Scopus subject areas

  • Oceanography
  • Environmental Engineering
  • Ecology
  • Geotechnical Engineering and Engineering Geology
  • Geology
  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ'. Together they form a unique fingerprint.

Cite this