Abstract
Iron oxide (Fe2O3) nanoparticles and reduced graphene oxide (rGO) sheets were supersonically sprayed onto a nickel substrate to fabricate flexible supercapacitors. The supersonic impact velocity was adjusted by varying the air chamber pressure from 2 to 6 bar, which facilitated the self-healing of Stone-Wall defects in rGO sheets. Supersonic spraying caused exfoliation of the rGO sheets, which in turn increased the surface area and adherence of the Fe2O3 nanoparticles. The optimal case exhibited a specific capacitance of 1.44 F⋅cm-2 at a current rate of 1.5 mA⋅cm-2 and the energy density was 14.23 mWh⋅cm-3 at 250 mW⋅cm-3. The width of the potential window increased to 1.4 V, implying a significant increase in the energy storage capability. The energy density of the supersonically sprayed Fe2O3/rGO electrode also showed no signs of deterioration even when the increased current density interfered with the electrode performance.
Original language | English |
---|---|
Pages (from-to) | 13684-13694 |
Number of pages | 11 |
Journal | Ceramics International |
Volume | 48 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2022 May 15 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government NRF-2020R1A5A1018153, NRF-2021R1A2C2010530, and 2020K1A3A1A74114847. The authors acknowledge King Saud University , Riyadh, Saudi Arabia, for funding this work through Researchers Supporting Project number (RSP-2021/30).
Publisher Copyright:
© 2022 Elsevier Ltd and Techna Group S.r.l.
Keywords
- Exfoliation
- FeO/rGO sheets
- Supercapacitor
- Supersonic spraying
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry