Abstract
Objective: Transient anterograde amnesia is occasionally observed in a number of conditions, including migraine, focal ischemia, venous flow abnormalities, and after general anesthesia. The inhalation anesthetic, isoflurane, is known to induce transient anterograde amnesia. We examined the involvement of brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB) in the underlying mechanisms of the isoflurane-induced transient anterograde amnesia. Methods: Adult male Sprague-Dawley rats were divided into three groups: the control group, the 10 minutes after recovery from isoflurane anesthesia group, and the 2 hours after recovery from isoflurane anesthesia group (n=8 in each group). The rats in the isoflurane-exposed groups were anesthetized with 1.2% isoflurane in 75% nitrous oxide and 25% oxygen for 2 hours in a Plexiglas anesthetizing chamber. Short-term memory was determined using the step-down avoidance task. BDNF and TrkB expressions in the hippocampus were evaluated by immunofluorescence staining and western blot analysis. Results: Latency in the step-down avoidance task was decreased 10 minutes after recovery from isoflurane anesthesia, whereas it recovered to the control level 2 hours after isoflurane anesthesia. The expressions of BDNF and TrkB in the hippocampus were decreased immediately after isoflurane anesthesia but were increased 2 hours after isoflurane anesthesia. Conclusion: In this study, isoflurane anesthesia induced transient anterograde amnesia, and the expressions of BDNF and TrkB in the hippocampus might be involved in the underlying mechanisms of this transient anterograde amnesia.
Original language | English |
---|---|
Pages (from-to) | 139-144 |
Number of pages | 6 |
Journal | Journal of Korean Neurosurgical Society |
Volume | 53 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2013 |
Externally published | Yes |
Keywords
- Anterograde amnesia
- Brain-derived neurotrophic factor
- Hippocampus
- Isoflurane
- Tyrosine kinase b receptor
ASJC Scopus subject areas
- Surgery
- General Neuroscience
- Clinical Neurology