TY - GEN
T1 - Joint coupled-feature representation and coupled boosting for AD diagnosis
AU - Shi, Yinghuan
AU - Suk, Heung Il
AU - Gao, Yang
AU - Shen, Dinggang
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/9/24
Y1 - 2014/9/24
N2 - Recently, there has been a great interest in computer- aided Alzheimer's Disease (AD) and Mild Cognitive Im- pairment (MCI) diagnosis. Previous learning based meth- ods defined the diagnosis process as a classification task and directly used the low-level features extracted from neu- roimaging data without considering relations among them. However, from a neuroscience point of view, it's well known that a human brain is a complex system that multiple brain regions are anatomically connected and functionally inter- act with each other. Therefore, it is natural to hypothesize that the low-level features extracted from neuroimaging da- ta are related to each other in some ways. To this end, in this paper, we first devise a coupled feature representa- tion by utilizing intra-coupled and inter-coupled interaction relationship. Regarding multi-modal data fusion, we pro- pose a novel coupled boosting algorithm that analyzes the pairwise coupled-diversity correlation between modalities. Specifically, we formulate a new weight updating function, which considers both incorrectly and inconsistently classi- fied samples. In our experiments on the ADNI dataset, the proposed method presented the best performance with accu- racies of 94.7% and 80.1% for AD vs. Normal Control (NC) and MCI vs. NC classifications, respectively, outperforming the competing methods and the state-of-the-art methods.
AB - Recently, there has been a great interest in computer- aided Alzheimer's Disease (AD) and Mild Cognitive Im- pairment (MCI) diagnosis. Previous learning based meth- ods defined the diagnosis process as a classification task and directly used the low-level features extracted from neu- roimaging data without considering relations among them. However, from a neuroscience point of view, it's well known that a human brain is a complex system that multiple brain regions are anatomically connected and functionally inter- act with each other. Therefore, it is natural to hypothesize that the low-level features extracted from neuroimaging da- ta are related to each other in some ways. To this end, in this paper, we first devise a coupled feature representa- tion by utilizing intra-coupled and inter-coupled interaction relationship. Regarding multi-modal data fusion, we pro- pose a novel coupled boosting algorithm that analyzes the pairwise coupled-diversity correlation between modalities. Specifically, we formulate a new weight updating function, which considers both incorrectly and inconsistently classi- fied samples. In our experiments on the ADNI dataset, the proposed method presented the best performance with accu- racies of 94.7% and 80.1% for AD vs. Normal Control (NC) and MCI vs. NC classifications, respectively, outperforming the competing methods and the state-of-the-art methods.
UR - http://www.scopus.com/inward/record.url?scp=84911432319&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2014.354
DO - 10.1109/CVPR.2014.354
M3 - Conference contribution
AN - SCOPUS:84911432319
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 2721
EP - 2728
BT - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PB - IEEE Computer Society
T2 - 27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014
Y2 - 23 June 2014 through 28 June 2014
ER -