Abstract
Quality assessment (QA) and brain extraction (BE) are two fundamental steps in 3D fetal brain MRI reconstruction and quantification. Conventionally, QA and BE are performed independently, ignoring the inherent relation of the two closely-related tasks. However, both of them focus on the brain region representation, so they can be jointly optimized to ensure the network to learn shared features and avoid overfitting. To this end, we propose a novel multi-stage deep learning model for joint QA and BE of fetal MRI. The locations and orientations of fetal brains are randomly variable, and the shapes and appearances of fetal brains change remarkably across gestational ages, thus imposing great challenges to extract shared features of QA and BE. To address these problems, we firstly design a brain detector to locate the brain region. Then we introduce the deformable convolution to adaptively adjust the receptive field for dealing with variable brain shapes. Finally, a task-specific module is used for image QA and BE simultaneously. To obtain a well-trained model, we further propose a multi-step training strategy. We cross validate our method on two independent fetal MRI datasets acquired from different scanners with different imaging protocols, and achieve promising performance.
Original language | English |
---|---|
Title of host publication | Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings |
Editors | Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 415-424 |
Number of pages | 10 |
ISBN (Print) | 9783030597245 |
DOIs | |
Publication status | Published - 2020 |
Event | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru Duration: 2020 Oct 4 → 2020 Oct 8 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12266 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 |
---|---|
Country/Territory | Peru |
City | Lima |
Period | 20/10/4 → 20/10/8 |
Bibliographical note
Publisher Copyright:© 2020, Springer Nature Switzerland AG.
Keywords
- Brain extraction
- Fetal MRI
- Quality assessment
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science