TY - GEN
T1 - Joint Neuroimage Synthesis and Representation Learning for Conversion Prediction of Subjective Cognitive Decline
AU - Liu, Yunbi
AU - Pan, Yongsheng
AU - Yang, Wei
AU - Ning, Zhenyuan
AU - Yue, Ling
AU - Liu, Mingxia
AU - Shen, Dinggang
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - Predicting the progression of preclinical Alzheimer’s disease (AD) such as subjective cognitive decline (SCD) is fundamental for the effective intervention of pathological cognitive decline. Even though multimodal neuroimaging has been widely used in automated AD diagnosis, there are few studies dedicated to SCD progression prediction, due to challenges of incomplete and limited data. To this end, we propose a Joint neuroimage Synthesis and Representation Learning (JSRL) framework with transfer learning for SCD conversion prediction using incomplete multimodal neuroimaging data. Specifically, JSRL consists of two major components: 1) a generative adversarial network for synthesizing missing neuroimaging data, and 2) a classification network for learning neuroimage representations and predicting the progression of SCD. These two subnetworks share the same feature encoding module, encouraging that the to-be-generated representations are prediction-oriented and also the underlying association among multimodal images can be effectively modeled for accurate prediction. To handle the limited data problem, we further leverage both image synthesis and prediction models learned from a large-scale ADNI database (with MRI and PET acquired from 863 subjects) to a small-scale SCD database (with only MRI acquired from 113 subjects) in a transfer learning manner. Experimental results show that the proposed JSRL can synthesize reasonable PET scans and is superior to several state-of-the-art methods in SCD conversion prediction.
AB - Predicting the progression of preclinical Alzheimer’s disease (AD) such as subjective cognitive decline (SCD) is fundamental for the effective intervention of pathological cognitive decline. Even though multimodal neuroimaging has been widely used in automated AD diagnosis, there are few studies dedicated to SCD progression prediction, due to challenges of incomplete and limited data. To this end, we propose a Joint neuroimage Synthesis and Representation Learning (JSRL) framework with transfer learning for SCD conversion prediction using incomplete multimodal neuroimaging data. Specifically, JSRL consists of two major components: 1) a generative adversarial network for synthesizing missing neuroimaging data, and 2) a classification network for learning neuroimage representations and predicting the progression of SCD. These two subnetworks share the same feature encoding module, encouraging that the to-be-generated representations are prediction-oriented and also the underlying association among multimodal images can be effectively modeled for accurate prediction. To handle the limited data problem, we further leverage both image synthesis and prediction models learned from a large-scale ADNI database (with MRI and PET acquired from 863 subjects) to a small-scale SCD database (with only MRI acquired from 113 subjects) in a transfer learning manner. Experimental results show that the proposed JSRL can synthesize reasonable PET scans and is superior to several state-of-the-art methods in SCD conversion prediction.
UR - http://www.scopus.com/inward/record.url?scp=85092736317&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59728-3_57
DO - 10.1007/978-3-030-59728-3_57
M3 - Conference contribution
AN - SCOPUS:85092736317
SN - 9783030597276
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 583
EP - 592
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
A2 - Martel, Anne L.
A2 - Abolmaesumi, Purang
A2 - Stoyanov, Danail
A2 - Mateus, Diana
A2 - Zuluaga, Maria A.
A2 - Zhou, S. Kevin
A2 - Racoceanu, Daniel
A2 - Joskowicz, Leo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Y2 - 4 October 2020 through 8 October 2020
ER -