Joint wireless information and energy transfer in a Two-User MIMO interference channel

Jaehyun Park, Bruno Clerckx

Research output: Contribution to journalArticlepeer-review

196 Citations (Scopus)


This paper investigates joint wireless information and energy transfer in a two-user MIMO interference channel, in which each receiver either decodes the incoming information data (information decoding, ID) or harvests the RF energy (energy harvesting, EH) to operate with a potentially perpetual energy supply. In the two-user interference channel, we have four different scenarios according to the receiver mode - (ID-1, ID-2), (EH-1, EH-2), (EH-1, ID-2), and (ID-1, EH-2). While the maximum information bit rate is unknown and finding the optimal transmission strategy is still open for (ID-1, ID-2), we have derived the optimal transmission strategy achieving the maximum harvested energy for (EH-1, EH-2). For (EH-1, ID-2), and (ID-1, EH-2), we find a necessary condition of the optimal transmission strategy and, accordingly, identify the achievable rate-energy (R-E) tradeoff region for two transmission strategies that satisfy the necessary condition - maximum energy beamforming (MEB) and minimum leakage beamforming (MLB). Furthermore, a new transmission strategy satisfying the necessary condition - signal-to-leakage-and-energy ratio (SLER) maximization beamforming - is proposed and shown to exhibit a better R-E region than the MEB and the MLB strategies. Finally, we propose a mode scheduling method to switch between (EH-1, ID-2) and (ID-1, EH-2) based on the SLER.

Original languageEnglish
Article number6571308
Pages (from-to)4210-4221
Number of pages12
JournalIEEE Transactions on Wireless Communications
Issue number8
Publication statusPublished - 2013


  • Joint wireless information and energy transfer
  • MIMO interference channel
  • rank-one beamforming

ASJC Scopus subject areas

  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Applied Mathematics


Dive into the research topics of 'Joint wireless information and energy transfer in a Two-User MIMO interference channel'. Together they form a unique fingerprint.

Cite this