Abstract
We propose a K-selective percolation process as a model for iterative removals of nodes with a specific intermediate degree in complex networks. In the model, a random node with degree K is deactivated one by one until no more nodes with degree K remain. The non-monotonic response of the giant component size on various synthetic and real-world networks implies a conclusion that a network can be more robust against such a selective attack by removing further edges. From a theoretical perspective, the K-selective percolation process exhibits a rich repertoire of phase transitions, including double transitions of hybrid and continuous, as well as reentrant transitions. Notably, we observe a tricritical-like point on Erdos-Rényi networks. We also examine a discontinuous transition with unusual order parameter fluctuation and distribution on simple cubic lattices, which does not appear in other percolation models with cascade processes. Finally, we perform finite-size scaling analysis to obtain critical exponents on various transition points, including those exotic ones.
Original language | English |
---|---|
Article number | 023115 |
Journal | Chaos |
Volume | 32 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2022 Feb 1 |
Bibliographical note
Funding Information:This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A2C2003669).
Publisher Copyright:
© 2022 Author(s).
ASJC Scopus subject areas
- Statistical and Nonlinear Physics
- Mathematical Physics
- Physics and Astronomy(all)
- Applied Mathematics