KEBAP: Korean Error Explainable Benchmark Dataset for ASR and Post-processing

Seonmin Koo, Chanjun Park, Jinsung Kim, Jaehyung Seo, Sugyeong Eo, Hyeonseok Moon, Heuiseok Lim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

Automatic Speech Recognition (ASR) systems are instrumental across various applications, with their performance being critically tied to user satisfaction. Conventional evaluation metrics for ASR systems produce a singular aggregate score, which is insufficient for understanding specific system vulnerabilities. Therefore, we aim to address the limitations of the previous ASR evaluation methods by introducing the Korean Error Explainable Benchmark Dataset for ASR and Post-processing (KEBAP). KEBAP enables comprehensive analysis of ASR systems at both speech- and text levels, thereby facilitating a more balanced assessment encompassing speech recognition accuracy and user readability. KEBAP provides 37 newly defined speech-level resources incorporating diverse noise environments and speaker characteristics categories, also presenting 13 distinct text-level error types. This paper demonstrates detailed statistical analyses of colloquial noise categories and textual error types. Furthermore, we conduct extensive validation and analysis on commercially deployed ASR systems, providing valuable insights into their performance. As a more fine-grained and real-world-centric evaluation method, KEBAP contributes to identifying and mitigating potential weaknesses in ASR systems.

Original languageEnglish
Title of host publicationEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
EditorsHouda Bouamor, Juan Pino, Kalika Bali
PublisherAssociation for Computational Linguistics (ACL)
Pages4798-4815
Number of pages18
ISBN (Electronic)9798891760608
Publication statusPublished - 2023
Event2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023 - Hybrid, Singapore, Singapore
Duration: 2023 Dec 62023 Dec 10

Publication series

NameEMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Country/TerritorySingapore
CityHybrid, Singapore
Period23/12/623/12/10

Bibliographical note

Publisher Copyright:
©2023 Association for Computational Linguistics.

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'KEBAP: Korean Error Explainable Benchmark Dataset for ASR and Post-processing'. Together they form a unique fingerprint.

Cite this