Large-scale EEG/MEG source localization with spatial flexibility

Stefan Haufe, Ryota Tomioka, Thorsten Dickhaus, Claudia Sannelli, Benjamin Blankertz, Guido Nolte, Klaus Robert Müller

Research output: Contribution to journalArticlepeer-review

79 Citations (Scopus)

Abstract

We propose a novel approach to solving the electro-/magnetoencephalographic (EEG/MEG) inverse problem which is based upon a decomposition of the current density into a small number of spatial basis fields. It is designed to recover multiple sources of possibly different extent and depth, while being invariant with respect to phase angles and rotations of the coordinate system. We demonstrate the method's ability to reconstruct simulated sources of random shape and show that the accuracy of the recovered sources can be increased, when interrelated field patterns are co-localized. Technically, this leads to large-scale mathematical problems, which are solved using recent advances in convex optimization. We apply our method for localizing brain areas involved in different types of motor imagery using real data from Brain-Computer Interface (BCI) sessions. Our approach based on single-trial localization of complex Fourier coefficients yields class-specific focal sources in the sensorimotor cortices.

Original languageEnglish
Pages (from-to)851-859
Number of pages9
JournalNeuroImage
Volume54
Issue number2
DOIs
Publication statusPublished - 2011 Jan 15
Externally publishedYes

Keywords

  • Basis field
  • Brain-computer interfaces
  • EEG
  • Inverse problem
  • Large-scale optimization
  • MEG
  • Motor imagery

ASJC Scopus subject areas

  • Neurology
  • Cognitive Neuroscience

Fingerprint

Dive into the research topics of 'Large-scale EEG/MEG source localization with spatial flexibility'. Together they form a unique fingerprint.

Cite this