Learning-based deformable image registration for infant MR images in the first year of life:

Shunbo Hu, Lifang Wei, Yaozong Gao, Yanrong Guo, Guorong Wu, Dinggang Shen

    Research output: Contribution to journalArticlepeer-review

    20 Citations (Scopus)

    Abstract

    Purpose: Many brain development studies have been devoted to investigate dynamic structural and functional changes in the first year of life. To quantitatively measure brain development in such a dynamic period, accurate image registration for different infant subjects with possible large age gap is of high demand. Although many state-of-the-art image registration methods have been proposed for young and elderly brain images, very few registration methods work for infant brain images acquired in the first year of life, because of (a) large anatomical changes due to fast brain development and (b) dynamic appearance changes due to white-matter myelination. Methods: To address these two difficulties, we propose a learning-based registration method to not only align the anatomical structures but also alleviate the appearance differences between two arbitrary infant MR images (with large age gap) by leveraging the regression forest to predict both the initial displacement vector and appearance changes. Specifically, in the training stage, two regression models are trained separately, with (a) one model learning the relationship between local image appearance (of one development phase) and its displacement toward the template (of another development phase) and (b) another model learning the local appearance changes between the two brain development phases. Then, in the testing stage, to register a new infant image to the template, we first predict both its voxel-wise displacement and appearance changes by the two learned regression models. Since such initializations can alleviate significant appearance and shape differences between new infant image and the template, it is easy to just use a conventional registration method to refine the remaining registration. Results: We apply our proposed registration method to align 24 infant subjects at five different time points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and achieve more accurate and robust registration results, compared to the state-of-the-art registration methods. Conclusions: The proposed learning-based registration method addresses the challenging task of registering infant brain images and achieves higher registration accuracy compared with other counterpart registration methods.

    Original languageEnglish
    Pages (from-to)158-170
    Number of pages13
    JournalMedical physics
    Volume44
    Issue number1
    DOIs
    Publication statusPublished - 2017 Jan

    Bibliographical note

    Publisher Copyright:
    © 2016 American Association of Physicists in Medicine.

    Keywords

    • deformable image registration
    • infant brain MR image
    • regression forest

    ASJC Scopus subject areas

    • Biophysics
    • Radiology Nuclear Medicine and imaging

    Fingerprint

    Dive into the research topics of 'Learning-based deformable image registration for infant MR images in the first year of life:'. Together they form a unique fingerprint.

    Cite this