Learning-based structurally-guided construction of resting-state functional correlation tensors

Lichi Zhang, Han Zhang, Xiaobo Chen, Qian Wang, Pew Thian Yap, Dinggang Shen

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


Functional magnetic resonance imaging (fMRI) measures changes in blood-oxygenation-level-dependent (BOLD) signals to detect brain activities. It has been recently reported that the spatial correlation patterns of resting-state BOLD signals in the white matter (WM) also give WM information often measured by diffusion tensor imaging (DTI). These correlation patterns can be captured using functional correlation tensor (FCT), which is analogous to the diffusion tensor (DT) obtained from DTI. In this paper, we propose a noise-robust FCT method aiming at further improving its quality, and making it eligible for further neuroscience study. The novel FCT estimation method consists of three major steps: First, we estimate the initial FCT using a patch-based approach for BOLD signal correlation to improve the noise robustness. Second, by utilizing the relationship between functional and diffusion data, we employ a regression forest model to learn the mapping between the initial FCTs and the corresponding DTs using the training data. The learned forest can then be applied to predict the DTI-like tensors given the initial FCTs from the testing fMRI data. Third, we re-estimate the enhanced FCT by utilizing the DTI-like tensors as a feedback guidance to further improve FCT computation. We have demonstrated the utility of our enhanced FCTs in Alzheimer's disease (AD) diagnosis by identifying mild cognitive impairment (MCI) patients from normal subjects.

Original languageEnglish
Pages (from-to)110-121
Number of pages12
JournalMagnetic Resonance Imaging
Publication statusPublished - 2017 Nov

Bibliographical note

Funding Information:
This work was supported by National Key Research and Development Program of China (2017YFC0107600), National Natural Science Foundation of China (61401271, 61473190, 81471733), Science and Technology Commission of Shanghai Municipality (16511101100, 16410722400), Medical Engineering Cross Research Foundation of Shanghai Jiao Tong University (YG2014MS50) and NIH grants (EB022880, AG041721, AG049371).

Publisher Copyright:
© 2017


  • DTI
  • Functional correlation tensor
  • Random forest
  • rs-fMRI

ASJC Scopus subject areas

  • Biophysics
  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Learning-based structurally-guided construction of resting-state functional correlation tensors'. Together they form a unique fingerprint.

Cite this