Light sintering of ultra-smooth and robust silver nanowire networks embedded in poly(vinyl-butyral) for flexible OLED

Dong Jun Lee, Youngsu Oh, Jae Min Hong, Young Wook Park, Byeong Kwon Ju

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

A conductive, uniform, and ultra-smooth flexible transparent composite film is produced by embedding silver nanowires (AgNWs) into poly(vinyl-butyral) (PVB) without pressure or high-temperature annealing. The adhesion of AgNWs was greatly improved by embedding them in PVB, and surface roughness and sheet resistance (Rs) improvements were achieved through the use of the intense pulsed light (IPL) method, which welds the interconnections among AgNWs in a short time without heat or pressure treatment. The sheet resistance of PVB/AgNWs with the IPL(PAI) composite film reaches 12.6 ohm/sq with a transmittance of 85.7% (at 550 nm); no clear changes in the sheet resistance are observed after a substrate bending and tape test, suggesting excellent flexibility. In the case of PAI, the change in sheet resistance was only 2.6% after a 2,000-bend test, and the resulting bending radius was less than 1 mm. When IPL was exposed to PVB/AgNWs, the figure of merit was 2.36 times higher than that without exposure. Finally, flexible OLEDs using PAI exhibited comparable or higher electroluminescent characteristics than other devices with well-known flexible electrodes—including indium-zinc-oxide on polymer plastic—which is a promising discovery for flexible optoelectronic applications.

Original languageEnglish
Article number14170
JournalScientific reports
Volume8
Issue number1
DOIs
Publication statusPublished - 2018 Dec 1

Bibliographical note

Funding Information:
This work was supported by the Industry Technology R&D program of MOTIE/KEIT [10048317, Development of red and blue OLEDs with external quantum efficiency over 20% using delayed fluorescent materials], the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2016R1A2B4014073), Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2017R1D1A1B03036520), the KIAT (Korea Institute for Advancement of Technology) grant funded by the Korea Government (MOTIE : Ministry of Trade Industry and Energy). (No. P0001018, HRD program for Highly educated human resources development project on cutting-edge sensor technology for sensor industry acceleration), and the Brain Korea 21 Plus Project in 2018.

Publisher Copyright:
© 2018, The Author(s).

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Light sintering of ultra-smooth and robust silver nanowire networks embedded in poly(vinyl-butyral) for flexible OLED'. Together they form a unique fingerprint.

Cite this