Linking multiple biomarker responses in Daphnia magna under thermal stress

Palas Samanta, Hyungjoon Im, Taeyong Shim, Joorim Na, Jinho Jung

    Research output: Contribution to journalArticlepeer-review

    20 Citations (Scopus)

    Abstract

    Temperature is an important abiotic variable that greatly influences the performance of aquatic ectotherms, especially under current anthropogenic global warming and thermal discharges. The aim of the present study was to evaluate thermal stress (20 °C vs 28 °C) in Daphnia magna over 21 d, focusing on the linkage among molecular and biochemical biomarker responses. Thermal stress significantly increased the levels of reactive oxygen species (ROS) and lipid peroxidation, especially in the 3-d short-term exposure treatment. This change in the ROS level was also correlated with mitochondrial membrane damage. These findings suggest that oxidative stress is the major pathway for thermally-induced toxicity of D. magna. Additionally, the expression levels of genes related to hypoxia (Hb), development (Vtg1), and sex determination (Dsx1-α, Dsx1-β, and Dsx2) were greatly increased by elevated temperature in a time-dependent manner. The cellular energy allocation was markedly decreased at the elevated temperature in the 3-d exposure treatment, mainly due to carbohydrates consumption for survival (oxidative stress defense). The present study showed that linking multiples biomarker responses are crucial for understanding the underlying mechanism of thermal stress on D. magna.

    Original languageEnglish
    Article number114432
    JournalEnvironmental Pollution
    Volume263
    DOIs
    Publication statusPublished - 2020 Aug

    Bibliographical note

    Funding Information:
    This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government ( NRF-2016R1A2B4016299 and NRF-2019R1A2C1002890 ).

    Publisher Copyright:
    © 2020 Elsevier Ltd

    Keywords

    • Biomarker
    • Daphnid
    • Mitotoxicity
    • Oxidative stress
    • Thermal stress

    ASJC Scopus subject areas

    • Toxicology
    • Pollution
    • Health, Toxicology and Mutagenesis

    Fingerprint

    Dive into the research topics of 'Linking multiple biomarker responses in Daphnia magna under thermal stress'. Together they form a unique fingerprint.

    Cite this