Load-balanced parallel merge sort on distributed memory parallel computers

Minsoo Jeon, Dongseung Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Sort can be speeded up on parallel computers by dividing and computing data individually in parallel. Merge sort can be parallelized, however, the conventional algorithm implemented on distributed memory computers has poor performance due to the successive reduction of the number of active (non-idling) processors by a half, up to one in the last merging stage. This paper presents load-balanced parallel merge sort algorithm where all processors participate in merging throughout the computation. Data are evenly distributed to all processors, and every processor is forced to work in merging phase. Significant enhancement of the performance has been achieved. Our analysis shows the upper bound of the speedup of the merge time as (P - 1)/ log P. We have had a speedup of 9.6 (upper bound is 10.5) on 32-processor Cray T3E in sorting of 4M 32-bit integers. The same idea can be applied to parallellize other sorting algorithms.

Original languageEnglish
Title of host publicationProceedings - International Parallel and Distributed Processing Symposium, IPDPS 2002
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages248
Number of pages1
ISBN (Electronic)0769515738, 9780769515731
DOIs
Publication statusPublished - 2002
Event16th International Parallel and Distributed Processing Symposium, IPDPS 2002 - Ft. Lauderdale, United States
Duration: 2002 Apr 152002 Apr 19

Publication series

NameProceedings - International Parallel and Distributed Processing Symposium, IPDPS 2002

Other

Other16th International Parallel and Distributed Processing Symposium, IPDPS 2002
Country/TerritoryUnited States
CityFt. Lauderdale
Period02/4/1502/4/19

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Modelling and Simulation

Fingerprint

Dive into the research topics of 'Load-balanced parallel merge sort on distributed memory parallel computers'. Together they form a unique fingerprint.

Cite this