Abstract
In this paper, we propose a simple yet effective object descriptor and a novel tracking algorithm to track a target object accurately. For the object description, we divide the bounding box of a target object into multiple patches and describe them with color and gradient histograms. Then, we determine the foreground weight of each patch to alleviate the impacts of background information in the bounding box. To this end, we perform random walk with restart (RWR) simulation. We then concatenate the weighted patch descriptors to yield the spatially ordered and weighted patch (SOWP) descriptor. For the object tracking, we incorporate the proposed SOWP descriptor into a novel tracking algorithm, which has three components: locator, checker, and scaler (LCS). The locator and the scaler estimate the center location and the size of a target, respectively. The checker determines whether it is safe to adjust the target scale in a current frame. These three components cooperate with one another to achieve robust tracking. Experimental results demonstrate that the proposed LCS tracker achieves excellent performance on recent benchmarks.
Original language | English |
---|---|
Article number | 7931611 |
Pages (from-to) | 3817-3830 |
Number of pages | 14 |
Journal | IEEE Transactions on Image Processing |
Volume | 26 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2017 Aug |
Bibliographical note
Funding Information:This work was supported in part by the National Research Foundation of Korea (NRF) through the Korea Government (MSIP) under Grant NRF-2015R1A2A1A10055037, and in part by the MSIP, Korea, through the ITRC support program supervised by the Institute for Information & communications Technology Promotion under Grant IITP-2017-2016-0-00464.
Publisher Copyright:
© 1992-2012 IEEE.
Keywords
- Visual tracking
- bounding box descriptor
- discriminative tracker
- object tracking
- tracking with multiple estimators
ASJC Scopus subject areas
- Software
- Computer Graphics and Computer-Aided Design