Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment

Jin Sung Park, Il Buem Lee, Hyeon Min Moon, Seok Cheol Hong, Minhaeng Cho

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

A eukaryotic cell is a microscopic world within which efficient material transport is essential. Yet, how a cell manages to deliver cellular cargos efficiently in a crowded environment remains poorly understood. Here, we used interferometric scattering microscopy to track unlabeled cargos in directional motion in a massively parallel fashion. Our label-free, cargo-tracing method revealed not only the dynamics of cargo transportation but also the fine architecture of the actively used cytoskeletal highways and the long-term evolution of the associated traffic at sub-diffraction resolution. Cargos frequently run into a blocked road or experience a traffic jam. Still, they have effective strategies to circumvent those problems: opting for an alternative mode of transport and moving together in tandem or migrating collectively. All taken together, a cell is an incredibly complex and busy space where the principle and practice of transportation intriguingly parallel those of our macroscopic world.

Original languageEnglish
Article number7160
JournalNature communications
Volume14
Issue number1
DOIs
Publication statusPublished - 2023 Dec

Bibliographical note

Publisher Copyright:
© 2023, The Author(s).

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment'. Together they form a unique fingerprint.

Cite this