Look at the first sentence: Position bias in question answering

Miyoung Ko, Jinhyuk Lee, Hyunjae Kim, Gangwoo Kim, Jaewoo Kang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

19 Citations (Scopus)

Abstract

Many extractive question answering models are trained to predict start and end positions of answers. The choice of predicting answers as positions is mainly due to its simplicity and effectiveness. In this study, we hypothesize that when the distribution of the answer positions is highly skewed in the training set (e.g., answers lie only in the k-th sentence of each passage), QA models predicting answers as positions can learn spurious positional cues and fail to give answers in different positions. We first illustrate this position bias in popular extractive QA models such as BiDAF and BERT and thoroughly examine how position bias propagates through each layer of BERT. To safely deliver position information without position bias, we train models with various de-biasing methods including entropy regularization and bias ensembling. Among them, we found that using the prior distribution of answer positions as a bias model is very effective at reducing position bias, recovering the performance of BERT from 37.48% to 81.64% when trained on a biased SQuAD dataset.

Original languageEnglish
Title of host publicationEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages1109-1121
Number of pages13
ISBN (Electronic)9781952148606
Publication statusPublished - 2020
Event2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020 - Virtual, Online
Duration: 2020 Nov 162020 Nov 20

Publication series

NameEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference

Conference

Conference2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020
CityVirtual, Online
Period20/11/1620/11/20

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Look at the first sentence: Position bias in question answering'. Together they form a unique fingerprint.

Cite this