Abstract
Nuclear magnetic resonance has been employed as a probe for the collective hydrocarbon chain dynamics in the organic-inorganic model biomembranes (CnH2n+1NH3)2SnCl6, undergoing order-disorder and conformational phase transitions. No anomalies were observed in the laboratory-frame spin-lattice relaxation measurements at the order-disorder phase transitions, whereas a discontinuity was manifest at the conformational phase transitions characteristic of a first-order phase transition. On the other hand, our rotating frame spin-lattice relaxation measurements revealed a low-frequency critical collective chain dynamics in the kilohertz regime associated with the order-disorder phase transition.
Original language | English |
---|---|
Pages (from-to) | 31-33 |
Number of pages | 3 |
Journal | Current Applied Physics |
Volume | 7 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2007 Jan |
Bibliographical note
Funding Information:This work was supported by the Korea Science and Engineering foundation (RO1-2005-000-10798-0 and Proton Accelerator User Program No. M202AK010021-04A1101-02110) and by the Korea Research Foundation (Grant No. KRF-2004-005-C00060 and Brain Korea 21 Project in 2005). We thank Dr. H.-J. Woo at the KIGAM for the proton-beam irradiation. Measurements at the Korean Basic Science Institute (KBSI) are acknowledged. The authors also gratefully acknowledge Korea University’s support for the Korea University’s 100th Anniversary Symposium on the State of the Art and the Prospect of the Interdisciplinary Nano Sciences.
Keywords
- Critical dynamics model biomembranes
- Nuclear magnetic resonance
- Phase transition
ASJC Scopus subject areas
- General Materials Science
- General Physics and Astronomy