Low temperature sintering and piezoelectric properties in Pb(Zr xTi1-x)O3-Pb(Zn1/3Nb 2/3)O3-Pb(Ni1/3Nb2/3)O3 ceramics

Cheol Woo Ahn, Hyun Cheol Song, Seung Ho Park, Sahn Nahm, Kenji Uchino, Shashank Priya, Hyeung Gyu Lee, Nam Kee Kang

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

High-power ceramics of the composition 0.8Pb(Zr0.5Ti 0.5)O3-0.2Pb[(Zn0.8Ni0.2) 1/3Nb2/3]O3 (0.8PZT-0.2PZNN) + 0.5 wt% MnO 2 have excellent piezoelectric and dielectric properties such as d33 = 320 pC/N, ε33T0 = 1227, kp = 0.54, and Qm = 1265. However, the sintering temperature of this composition is high, approximately 1200°C, restricting the use of cheap base metal electrodes in the fabrication of multilayer components. In this study, we provide a solution to this problem and report a low sintering temperature high-power composition in a PZT-PZNN system. CuO and Al2O3 were selected as sintering agents. It was found that the addition of CuO can reduce the sintering temperature to 920°C, but it can also significantly reduce the piezoelectric properties. The reduction of Qm magnitude was 81% when 0.5 wt% CuO was added. The addition of Al2O3 as a sintering agent was found to improve Q m magnitude but significant reductions in piezoelectric and dielectric properties were observed. The addition of excess ZnO and NiO was found to improve the density and piezoelectric properties, but it was also found to reduce Qm magnitude. Consequently, the optimization of the concentration of the sintering agents was carried out, and the optimized low sintering temperature high-power composition was found to be 0.875Pb(Zr 0.5Ti0.5)O3-0.125Pb[(Zn0.8Ni 0.2)1.5/3Nb2/3]O3 + 0.5 wt% MnO 2 + 0.2wt% CuO + 0.3 wt% Al2O3. The piezo-electric properties of the specimens of this composition sintered at 920°C were found to be kp =0.581, Qm = 809, d 33 = 345 pC/N, ε3T0 = 1345, and Tc = 330°C.

Original languageEnglish
Pages (from-to)1314-1321
Number of pages8
JournalJapanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers
Volume44
Issue number3
DOIs
Publication statusPublished - 2005 Mar

Keywords

  • High-power device
  • Low-temperature sintering
  • Pzt-pznn ceramics

ASJC Scopus subject areas

  • General Engineering
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Low temperature sintering and piezoelectric properties in Pb(Zr xTi1-x)O3-Pb(Zn1/3Nb 2/3)O3-Pb(Ni1/3Nb2/3)O3 ceramics'. Together they form a unique fingerprint.

Cite this