Machine learning prediction and interpretation of the impact of microplastics on soil properties

Piumi Amasha Withana, Jie Li, Sachini Supunsala Senadheera, Chuanfang Fan, Yin Wang, Yong Sik Ok

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The annual microplastic (MP) release into soils is 4–23 times higher than that into oceans, significantly impacting soil quality. However, the mechanisms underlying how MPs impact soil properties remain largely unknown. Soil-MP interactions are complex because of soil heterogeneity and varying MP properties. This lack of understanding was exacerbated by the diverse experimental conditions and soil types used in this study. Predicting changes in soil properties in the presence of MPs is challenging, laborious, and time-consuming. To address these issues, machine learning was applied to fit datasets from peer-reviewed publications to predict and interpret how MPs influence soil properties, including pH, dissolved organic carbon (DOC), total P, NO3-N, NH4+-N, and acid phosphatase enzyme activity (acid P). Among the developed models, the gradient boost regression (GBR) model showed the highest R2 (0.86–0.99) compared to the decision tree and random forest models. The GBR model interpretation showed that MP properties contributed more than 50% to altering the acid P and NO3-N concentrations in soils, whereas they had a negligible impact on total P and 10–20% impact on soil pH, DOC, and NH4+-N. Specifically, the size of MPs was the dominant factor influencing acid P (89.3%), pH (71.6%), and DOC (44.5%) in soils. NO3-N was mainly affected by the MP type (52.0%). The NH4+-N was mainly affected by the MP dose (46.8%). The quantitative insights into the impact of MPs on soil properties of this study could aid in understanding the roles of MPs in soil systems.

Original languageEnglish
Article number122833
JournalEnvironmental Pollution
Volume341
DOIs
Publication statusPublished - 2024 Jan 15

Bibliographical note

Publisher Copyright:
© 2023 Elsevier Ltd

Keywords

  • Artifical Intelligence
  • ESG
  • SDG15 Life on Land
  • Sustainability
  • Sustainable Waste Management
  • UN SDGs

ASJC Scopus subject areas

  • Toxicology
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Machine learning prediction and interpretation of the impact of microplastics on soil properties'. Together they form a unique fingerprint.

Cite this