TY - JOUR
T1 - Magmatism, serpentinization and life
T2 - Insights through drilling the Atlantis Massif (IODP Expedition 357)
AU - Früh-Green, Gretchen L.
AU - Orcutt, Beth N.
AU - Rouméjon, Stéphane
AU - Lilley, Marvin D.
AU - Morono, Yuki
AU - Cotterill, Carol
AU - Green, Sophie
AU - Escartin, Javier
AU - John, Barbara E.
AU - McCaig, Andrew M.
AU - Cannat, Mathilde
AU - Ménez, Bénédicte
AU - Schwarzenbach, Esther M.
AU - Williams, Morgan J.
AU - Morgan, Sally
AU - Lang, Susan Q.
AU - Schrenk, Matthew O.
AU - Brazelton, William J.
AU - Akizawa, Norikatsu
AU - Boschi, Chiara
AU - Dunkel, Kristina G.
AU - Quéméneur, Marianne
AU - Whattam, Scott A.
AU - Mayhew, Lisa
AU - Harris, Michelle
AU - Bayrakci, Gaye
AU - Behrmann, Jan Hinrich
AU - Herrero-Bervera, Emilio
AU - Hesse, Kirsten
AU - Liu, Hai Quan
AU - Ratnayake, Amila Sandaruwan
AU - Twing, Katrina
AU - Weis, Dominique
AU - Zhao, Rui
AU - Bilenker, Laura
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/12/15
Y1 - 2018/12/15
N2 - IODP Expedition 357 used two seabed drills to core 17 shallow holes at 9 sites across Atlantis Massif ocean core complex (Mid-Atlantic Ridge 30°N). The goals of this expedition were to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration in one borehole. The cores show highly heterogeneous rock types and alteration associated with changes in bulk rock chemistry that reflect multiple phases of magmatism, fluid-rock interaction and mass transfer within the detachment fault zone. Recovered ultramafic rocks are dominated by pervasively serpentinized harzburgite with intervals of serpentinized dunite and minor pyroxenite veins; gabbroic rocks occur as melt impregnations and veins. Dolerite intrusions and basaltic rocks represent the latest magmatic activity. The proportion of mafic rocks is volumetrically less than the amount of mafic rocks recovered previously by drilling the central dome of Atlantis Massif at IODP Site U1309. This suggests a different mode of melt accumulation in the mantle peridotites at the ridge-transform intersection and/or a tectonic transposition of rock types within a complex detachment fault zone. The cores revealed a high degree of serpentinization and metasomatic alteration dominated by talc-amphibole-chlorite overprinting. Metasomatism is most prevalent at contacts between ultramafic and mafic domains (gabbroic and/or doleritic intrusions) and points to channeled fluid flow and silica mobility during exhumation along the detachment fault. The presence of the mafic lenses within the serpentinites and their alteration to mechanically weak talc, serpentine and chlorite may also be critical in the development of the detachment fault zone and may aid in continued unroofing of the upper mantle peridotite/gabbro sequences. New technologies were also developed for the seabed drills to enable biogeochemical and microbiological characterization of the environment. An in situ sensor package and water sampling system recorded real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential (Eh), and temperature and during drilling and sampled bottom water after drilling. Systematic excursions in these parameters together with elevated hydrogen and methane concentrations in post-drilling fluids provide evidence for active serpentinization at all sites. In addition, chemical tracers were delivered into the drilling fluids for contamination testing, and a borehole plug system was successfully deployed at some sites for future fluid sampling. A major achievement of IODP Expedition 357 was to obtain microbiological samples along a west–east profile, which will provide a better understanding of how microbial communities evolve as ultramafic and mafic rocks are altered and emplaced on the seafloor. Strict sampling handling protocols allowed for very low limits of microbial cell detection, and our results show that the Atlantis Massif subsurface contains a relatively low density of microbial life.
AB - IODP Expedition 357 used two seabed drills to core 17 shallow holes at 9 sites across Atlantis Massif ocean core complex (Mid-Atlantic Ridge 30°N). The goals of this expedition were to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration in one borehole. The cores show highly heterogeneous rock types and alteration associated with changes in bulk rock chemistry that reflect multiple phases of magmatism, fluid-rock interaction and mass transfer within the detachment fault zone. Recovered ultramafic rocks are dominated by pervasively serpentinized harzburgite with intervals of serpentinized dunite and minor pyroxenite veins; gabbroic rocks occur as melt impregnations and veins. Dolerite intrusions and basaltic rocks represent the latest magmatic activity. The proportion of mafic rocks is volumetrically less than the amount of mafic rocks recovered previously by drilling the central dome of Atlantis Massif at IODP Site U1309. This suggests a different mode of melt accumulation in the mantle peridotites at the ridge-transform intersection and/or a tectonic transposition of rock types within a complex detachment fault zone. The cores revealed a high degree of serpentinization and metasomatic alteration dominated by talc-amphibole-chlorite overprinting. Metasomatism is most prevalent at contacts between ultramafic and mafic domains (gabbroic and/or doleritic intrusions) and points to channeled fluid flow and silica mobility during exhumation along the detachment fault. The presence of the mafic lenses within the serpentinites and their alteration to mechanically weak talc, serpentine and chlorite may also be critical in the development of the detachment fault zone and may aid in continued unroofing of the upper mantle peridotite/gabbro sequences. New technologies were also developed for the seabed drills to enable biogeochemical and microbiological characterization of the environment. An in situ sensor package and water sampling system recorded real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential (Eh), and temperature and during drilling and sampled bottom water after drilling. Systematic excursions in these parameters together with elevated hydrogen and methane concentrations in post-drilling fluids provide evidence for active serpentinization at all sites. In addition, chemical tracers were delivered into the drilling fluids for contamination testing, and a borehole plug system was successfully deployed at some sites for future fluid sampling. A major achievement of IODP Expedition 357 was to obtain microbiological samples along a west–east profile, which will provide a better understanding of how microbial communities evolve as ultramafic and mafic rocks are altered and emplaced on the seafloor. Strict sampling handling protocols allowed for very low limits of microbial cell detection, and our results show that the Atlantis Massif subsurface contains a relatively low density of microbial life.
KW - Atlantis Massif
KW - Deep biosphere
KW - Detachment faulting
KW - IODP Expedition 357
KW - Serpentinization
KW - Si metasomatism
UR - http://www.scopus.com/inward/record.url?scp=85053594504&partnerID=8YFLogxK
U2 - 10.1016/j.lithos.2018.09.012
DO - 10.1016/j.lithos.2018.09.012
M3 - Article
AN - SCOPUS:85053594504
SN - 0024-4937
VL - 323
SP - 137
EP - 155
JO - Lithos
JF - Lithos
ER -