Magnetic properties and electronic origin of the interface between dilute magnetic semiconductors with orthogonal magnetic anisotropy

Ryan F. Need, Seul Ki Bac, Xinyu Liu, Sanghoon Lee, Brian J. Kirby, Margaret Dobrowolska, Jacek Kossut, Jacek K. Furdyna

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Controlling changes in magnetic anisotropy across epitaxial film interfaces is an important prerequisite for many spintronic devices. For the canonical dilute magnetic semiconductor GaMnAs, magnetic anisotropy is highly tunable through strain and doping, making it a fascinating model system for exploration of anisotropy control in a carrier-mediated ferromagnet. Here, we have used transmission electron microscopy and polarized neutron reflectometry to characterize the interface between GaMnAs-based layers designed to have anisotropy vectors oriented at right angles from one another. For a bilayer of Ga1-xMnxAs1-yPy and Ga1-xMnxAs, we find that the entirety of the Ga1-xMnxAs layer exhibits in-plane magnetic anisotropy and that the majority of the Ga1-xMnxAs1-yPy exhibits perpendicular anisotropy. However, near the Ga1-xMnxAs interface, we observe a thin Mn-rich region of the nominally perpendicular Ga1-xMnxAs1-yPy that instead exhibits in-plane anisotropy. Using first-principles energy considerations, we explain this sublayer as a natural consequence of interfacial carrier migration.

Original languageEnglish
Article number054410
JournalPhysical Review Materials
Volume4
Issue number5
DOIs
Publication statusPublished - 2020 May

Bibliographical note

Funding Information:
We thank S. Rouvimov for providing the TEM results, and Xiang Li for taking the XRD measurements. This work was supported by NSF Grants DMR14-00432 and DMR-19-05277, supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1A02042965). R.F.N. acknowledges support from the National Research Council Research Associateship Program.

Publisher Copyright:
© 2020 American Physical Society.

ASJC Scopus subject areas

  • Materials Science(all)
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Magnetic properties and electronic origin of the interface between dilute magnetic semiconductors with orthogonal magnetic anisotropy'. Together they form a unique fingerprint.

Cite this