Abstract
Statistical models for manifold-valued data permit capturing the intrinsic nature of the curved spaces in which the data lie and have been a topic of research for several decades. Typically, these formulations use geodesic curves and distances defined locally for most cases - this makes it hard to design parametric models globally on smooth manifolds. Thus, most (manifold specific) parametric models available today assume that the data lie in a small neighborhood on the manifold. To address this 'locality' problem, we propose a novel nonparametric model which unifies multivariate general linear models (MGLMs) using multiple tangent spaces. Our framework generalizes existing work on (both Euclidean and non-Euclidean) general linear models providing a recipe to globally extend the locally-defined parametric models (using a mixture of local models). By grouping observations into sub-populations at multiple tangent spaces, our method provides insights into the hidden structure (geodesic relationships) in the data. This yields a framework to group observations and discover geodesic relationships between covari-ates X and manifold-valued responses Y, which we call Dirichlet process mixtures of multivariate general linear models (DP-MGLM) on Rie-mannian manifolds. Finally, we present proof of concept experiments to validate our model.
Original language | English |
---|---|
Title of host publication | 32nd International Conference on Machine Learning, ICML 2015 |
Editors | David Blei, Francis Bach |
Publisher | International Machine Learning Society (IMLS) |
Pages | 1199-1208 |
Number of pages | 10 |
ISBN (Electronic) | 9781510810587 |
Publication status | Published - 2015 |
Externally published | Yes |
Event | 32nd International Conference on Machine Learning, ICML 2015 - Lile, France Duration: 2015 Jul 6 → 2015 Jul 11 |
Publication series
Name | 32nd International Conference on Machine Learning, ICML 2015 |
---|---|
Volume | 2 |
Conference
Conference | 32nd International Conference on Machine Learning, ICML 2015 |
---|---|
Country/Territory | France |
City | Lile |
Period | 15/7/6 → 15/7/11 |
Bibliographical note
Funding Information:This work was supported in part by NIH grants AG040396 (VS), NS066340 (BCV), NSF CAREER award 1252725 (VS). Partial support was also provided by the Center for Predictive Computational Phenotyping (CPCP) at UW-Madison (All 17924). We are grateful to Michael A. Newton, Vamsi K. Ithapu and WonHwa Kim for various discussions related to the content presented in this paper.
Publisher Copyright:
Copyright © 2015 by the author(s).
ASJC Scopus subject areas
- Human-Computer Interaction
- Computer Science Applications