Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages

Yuri Kim, Hee Joon Jung, Yunjung Lee, Sagang Koo, Ramar Thangam, Woo Young Jang, Seong Yeol Kim, Sangwoo Park, Sungkyu Lee, Gunhyu Bae, Kapil Dev Patel, Qiang Wei, Ki Bum Lee, Ramasamy Paulmurugan, Woong Kyo Jeong, Taeghwan Hyeon, Dokyoon Kim, Heemin Kang

Research output: Contribution to journalArticlepeer-review

35 Citations (Scopus)


The receptor-ligand interactions in cells are dynamically regulated by modulation of the ligand accessibility. In this study, we utilize size-tunable magnetic nanoparticle aggregates ordered at both nanometer and atomic scales. We flexibly anchor magnetic nanoparticle aggregates of tunable sizes over the cell-adhesive RGD ligand (Arg-Gly-Asp)-active material surface while maintaining the density of dispersed ligands accessible to macrophages at constant. Lowering the accessible ligand dispersity by increasing the aggregate size at constant accessible ligand density facilitates the binding of integrin receptors to the accessible ligands, which promotes the adhesion of macrophages. In high ligand dispersity, distant magnetic manipulation to lift the aggregates (which increases ligand accessibility) stimulates the binding of integrin receptors to the accessible ligands available under the aggregates to augment macrophage adhesion-mediated pro-healing polarization both in vitro and in vivo. In low ligand dispersity, distant control to drop the aggregates (which decreases ligand accessibility) repels integrin receptors away from the aggregates, thereby suppressing integrin receptor-ligand binding and macrophage adhesion, which promotes inflammatory polarization. Here, we present "accessible ligand dispersity" as a novel fundamental parameter that regulates receptor-ligand binding, which can be reversibly manipulated by increasing and decreasing the ligand accessibility. Limitless tuning of nanoparticle aggregate dimensions and morphology can offer further insight into the regulation of receptor-ligand binding in host cells.

Original languageEnglish
Pages (from-to)5769-5783
Number of pages15
JournalJournal of the American Chemical Society
Issue number13
Publication statusPublished - 2022 Apr 6

Bibliographical note

Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages'. Together they form a unique fingerprint.

Cite this