TY - GEN
T1 - Matrix-similarity based loss function and feature selection for Alzheimer's disease diagnosis
AU - Zhu, Xiaofeng
AU - Suk, Heung Il
AU - Shen, Dinggang
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/9/24
Y1 - 2014/9/24
N2 - Recent studies on Alzheimer's Disease (AD) or its prodromal stage, Mild Cognitive Impairment (MCI), diagnosis presented that the tasks of identifying brain disease status and predicting clinical scores based on neuroimaging features were highly related to each other. However, these tasks were often conducted independently in the previous studies. Regarding the feature selection, to our best knowledge, most of the previous work considered a loss function defined as an element-wise difference between the target values and the predicted ones. In this paper, we consider the problems of joint regression and classification for AD/MCI diagnosis and propose a novel matrix-similarity based loss function that uses high-level information inherent in the target response matrix and imposes the information to be preserved in the predicted response matrix. The newly devised loss function is combined with a group lasso method for joint feature selection across tasks, i.e., clinical scores prediction and disease status identification. We conducted experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and showed that the newly devised loss function was effective to enhance the performances of both clinical score prediction and disease status identification, outperforming the state-of-the-art methods.
AB - Recent studies on Alzheimer's Disease (AD) or its prodromal stage, Mild Cognitive Impairment (MCI), diagnosis presented that the tasks of identifying brain disease status and predicting clinical scores based on neuroimaging features were highly related to each other. However, these tasks were often conducted independently in the previous studies. Regarding the feature selection, to our best knowledge, most of the previous work considered a loss function defined as an element-wise difference between the target values and the predicted ones. In this paper, we consider the problems of joint regression and classification for AD/MCI diagnosis and propose a novel matrix-similarity based loss function that uses high-level information inherent in the target response matrix and imposes the information to be preserved in the predicted response matrix. The newly devised loss function is combined with a group lasso method for joint feature selection across tasks, i.e., clinical scores prediction and disease status identification. We conducted experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, and showed that the newly devised loss function was effective to enhance the performances of both clinical score prediction and disease status identification, outperforming the state-of-the-art methods.
UR - http://www.scopus.com/inward/record.url?scp=84911457687&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2014.395
DO - 10.1109/CVPR.2014.395
M3 - Conference contribution
AN - SCOPUS:84911457687
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 3089
EP - 3096
BT - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PB - IEEE Computer Society
T2 - 27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014
Y2 - 23 June 2014 through 28 June 2014
ER -