Max-margin based learning for discriminative Bayesian network from neuroimaging data

Luping Zhou, Lei Wang, Lingqiao Liu, Philip Ogunbona, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Recently, neuroimaging data have been increasingly used to study the causal relationship among brain regions for the understanding and diagnosis of brain diseases. Recent work on sparse Gaussian Bayesian network (SGBN) has shown it as an efficient tool to learn large scale directional brain networks from neuroimaging data. In this paper, we propose a learning approach to constructing SGBNs that are both representative and discriminative for groups in comparison. A max-margin criterion built directly upon the SGBN models is proposed to effectively optimize the classification performance of the SGBNs. The proposed method shows significant improvements over the state-of-the-art works in the discriminative power of SGBNs.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
PublisherSpringer Verlag
Pages321-328
Number of pages8
Volume8675 LNCS
EditionPART 3
ISBN (Print)9783319104423
DOIs
Publication statusPublished - 2014 Jan 1
Externally publishedYes
Event17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014 - Boston, MA, United States
Duration: 2014 Sept 142014 Sept 18

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 3
Volume8675 LNCS
ISSN (Print)03029743
ISSN (Electronic)16113349

Other

Other17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014
Country/TerritoryUnited States
CityBoston, MA
Period14/9/1414/9/18

ASJC Scopus subject areas

  • General Computer Science
  • Theoretical Computer Science

Fingerprint

Dive into the research topics of 'Max-margin based learning for discriminative Bayesian network from neuroimaging data'. Together they form a unique fingerprint.

Cite this