Abstract
Let U be a bounded open subset of ℝd and let Ω be a Lebesgue measurable subset of U. Let γ = (γ1, · · ·, γn): U \ Ω → ℝn be a Lebesgue measurable function, and let µ be a Borel measure on ℝd+n defined by where ψ is a smooth function supported in U. In this paper we give some conditions under which the Fourier decay estimates |µ(ξ)| ≤ C(1+|ξ|)-ε hold for some ε > 0. As a corollary we obtain the Lp-boundedness properties of the maximal operators MS associated with a certain class of possibly non-smooth n-dimensional submanifolds of ℝd+n, i.e., where Ωsym is a radially symmetric Lebesgue measurable subset of ℝd, γ(y) = (γ1(y), · · ·, γn(y)), γi(ty) = taiγi(y) for each t > 0 where ai ∈ ℝ, and the function γi: ℝd \Ωsym → ℝ satisfies some singularity conditions over a certain subset of ℝd. Also we investigate the endpoint (parabolic H1, L1,∞) mapping properties of the maximal operators MH associated with a certain class of possibly non-smooth hypersurfaces, i.e., where the function γ: ℝd → ℝ satisfies some singularity conditions over a certain subset of ℝd and γ(ty) = tmγ(y) for each t > 0 where m > 0.
Original language | English |
---|---|
Pages (from-to) | 4597-4629 |
Number of pages | 33 |
Journal | Transactions of the American Mathematical Society |
Volume | 369 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
Publisher Copyright:© 2017 American Mathematical Society.
Keywords
- Maximal operators
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics