TY - JOUR
T1 - Maximized performance of dye solar cells on plastic
T2 - A combined theoretical and experimental optimization approach
AU - Li, Yuelong
AU - Carretero-Palacios, Sol
AU - Yoo, Kicheon
AU - Kim, Jong Hak
AU - Jiménez-Solano, Alberto
AU - Lee, Chul Ho
AU - Míguez, Hernán
AU - Ko, Min Jae
N1 - Funding Information:
Financial support from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 307081 (POLIGHT) and the Spanish Ministry of Economy and Competitiveness under grant MAT2014-54852-R is gratefully acknowledged. YL acknowledges the financial support from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement no. 622533. AJS thanks Spanish Ministry of Economy and Competitiveness for funding through an FPI program under the project MAT2011-23593. MJK acknowledges funding support from the Global Frontier R&D Program on Center for Multiscale Energy System (2012M3A6A7054856), the Technology Development Program to Solve Climate Changes (2015M1A2A2056824) and 2015 University-Institute cooperation program funded by the National Research Foundation under the Ministry of Science, ICT & Future Planning, Korea. This work was also supported by the KIST institutional programs.
Publisher Copyright:
© 2016 The Royal Society of Chemistry.
PY - 2016/6
Y1 - 2016/6
N2 - We demonstrate that a combined optimization approach based on the sequential alternation of theoretical analysis and experimental realization gives rise to plastic supported dye solar cells for which both light harvesting efficiency and electron collection are maximized. Rationalized configurations with optimized light trapping and charge extraction are realized to achieve photoanodes on plastic prepared at low temperature, showing a power conversion efficiency of 8.55% and a short circuit photocurrent of 16.11 mA cm-2, unprecedented for plastic based dye solar cell devices. Furthermore, the corresponding fully flexible designs present stable mechanical properties after several bending cycles, displaying 7.79% power conversion efficiency, an average broadband internal quantum efficiency above 90%, and a short circuit photocurrent of 15.94 mA cm-2, which is the largest reported value for bendable cells of this sort to date.
AB - We demonstrate that a combined optimization approach based on the sequential alternation of theoretical analysis and experimental realization gives rise to plastic supported dye solar cells for which both light harvesting efficiency and electron collection are maximized. Rationalized configurations with optimized light trapping and charge extraction are realized to achieve photoanodes on plastic prepared at low temperature, showing a power conversion efficiency of 8.55% and a short circuit photocurrent of 16.11 mA cm-2, unprecedented for plastic based dye solar cell devices. Furthermore, the corresponding fully flexible designs present stable mechanical properties after several bending cycles, displaying 7.79% power conversion efficiency, an average broadband internal quantum efficiency above 90%, and a short circuit photocurrent of 15.94 mA cm-2, which is the largest reported value for bendable cells of this sort to date.
UR - http://www.scopus.com/inward/record.url?scp=84974530266&partnerID=8YFLogxK
U2 - 10.1039/c6ee00424e
DO - 10.1039/c6ee00424e
M3 - Article
AN - SCOPUS:84974530266
SN - 1754-5692
VL - 9
SP - 2061
EP - 2071
JO - Energy and Environmental Science
JF - Energy and Environmental Science
IS - 6
ER -