Measurement of ψ(2S) nuclear modification at backward and forward rapidity in p+p, p+Al, and p+Au collisions at sNN =200 GeV

PHENIX Collaboration

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Suppression of the J/ψ nuclear-modification factor has been seen as a trademark signature of final-state effects in large collision systems for decades. In small systems, the nuclear modification was attributed to cold-nuclear-matter effects until the observation of strong differential suppression of the ψ(2S) state in p+A and d+A collisions suggested the presence of final-state effects. Results of J/ψ and ψ(2S) measurements in the dimuon decay channel are presented here for p+p, p+Al, and p+Au collision systems at sNN=200GeV. The results are predominantly shown in the form of the nuclear-modification factor, RpA, the ratio of the ψ(2S) invariant yield per nucleon-nucleon collision in collisions of proton on target nucleus to that in p+p collisions. Measurements of the J/ψ and ψ(2S) nuclear-modification factor are compared with shadowing and transport-model predictions, as well as to complementary measurements at Large Hadron Collider energies.

Original languageEnglish
Article number064912
JournalPhysical Review C
Issue number6
Publication statusPublished - 2022 Jun

Bibliographical note

Funding Information:
We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We also thank H.-S. Shao and J.-P. Lansberg et al., X. Du, and R. Rapp for useful discussions and for providing unpublished predictions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Natural Science Foundation of China (People's Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), J. Bolyai Research Scholarship, EFOP, the New National Excellence Program (ÚNKP), NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research and SRC(CENuM) Programs through NRF funded by the Ministry of Education and the Ministry of Science and ICT (Korea). Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), University of Zambia, the Government of the Republic of Zambia (Zambia), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the US-Hungarian Fulbright Foundation, and the US-Israel Binational Science Foundation.

Publisher Copyright:
© 2022 American Physical Society.

ASJC Scopus subject areas

  • Nuclear and High Energy Physics


Dive into the research topics of 'Measurement of ψ(2S) nuclear modification at backward and forward rapidity in p+p, p+Al, and p+Au collisions at sNN =200 GeV'. Together they form a unique fingerprint.

Cite this