Measurement of blade tip heat transfer and leakage flow in a turbine cascade with a multi-cavity squealer tip

Jung Shin Park, Sang Hoon Lee, Jae Su Kwak, Won Suk Lee, Jin Taek Chung

Research output: Contribution to conferencePaperpeer-review

23 Citations (Scopus)

Abstract

Tip leakage flow induces high heat transfer to the blade tip and causes significant aerodynamic losses. In this paper, we propose a multi-cavity squealer tip with an additional rib in the squealer cavity. Our study investigated the effects of the rib location and shape on the blade tip heat transfer and the total pressure loss. Experiments were performed in a five-bladed linear cascade using a low speed wind tunnel. The blade chord, pitch, and span length were 126mm, 102.7mm, and 160mm, respectively. The Reynolds number, based on the blade chord and cascade exit velocity, was 2.44×105, and a tip clearance of 1.25% of the blade span was considered. The additional rib was installed in the squealer tip cavity near the leading edge, the mid-chord, and the training edge, respectively. The shape of the rib was also varied from rectangular to triangular in order to minimize the rib surface area exposed to the hot gas. The secondary flow and total pressure loss were measured using a seven-hole probe at one-chord downstream of the blade trailing edge, and the heat transfer coefficient distributions were measured by utilizing the hue-detection based transient liquid crystal technique. Flow measurement results indicated that the proposed multi-cavity tip reduced the total pressure loss. The blade tip heat transfer measurement results showed that the proposed multi-cavity tip was able to reduce the maximum heat transfer region near the cavity floor near the leading edge, but the heat transfer on the second cavity floor increased due to the leakage flow reattachment.

Original languageEnglish
DOIs
Publication statusPublished - 2013
EventASME 2013 Turbine Blade Tip Symposium, TBTS 2013 - Hamburg, Germany
Duration: 2013 Sept 302013 Oct 3

Other

OtherASME 2013 Turbine Blade Tip Symposium, TBTS 2013
Country/TerritoryGermany
CityHamburg
Period13/9/3013/10/3

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Measurement of blade tip heat transfer and leakage flow in a turbine cascade with a multi-cavity squealer tip'. Together they form a unique fingerprint.

Cite this