Measurements of azimuthal anisotropy and charged-particle multiplicity in d + Au collisions at s NN =200, 62.4, 39, and 19.6 GeV

PHENIX Collaboration

Research output: Contribution to journalArticlepeer-review

40 Citations (Scopus)

Abstract

We present measurements of the elliptic flow (v2) as a function of transverse momentum (pT), pseudorapidity (η), and centrality in d+Au collisions at sNN=200, 62.4, 39, and 19.6 GeV. The beam-energy scan of d+Au collisions provides a testing ground for the onset of flow signatures in small collision systems. We measure a nonzero v2 signal at all four collision energies, which, at midrapidity and low pT, is consistent with predictions from viscous hydrodynamic models. Comparisons with calculations from parton transport models (based on the ampt Monte Carlo generator) show good agreement with the data at midrapidity to forward (d-going) rapidities and low pT. At backward (Au-going) rapidities and pT>1.5GeV/c, the data diverges from ampt calculations of v2 relative to the initial geometry, indicating the possible dominance of nongeometry related correlations, referred to as nonflow. We also present measurements of the charged-particle multiplicity (dNch/dη) as a function of η in central d+Au collisions at the same energies. We find that in d+Au collisions at sNN=200 GeV the v2 scales with dNch/dη over all η in the PHENIX acceptance. At sNN=62.4, and 39 GeV, v2 scales with dNch/dη at midrapidity and forward rapidity, but falls off at backward rapidity. This departure from the dNch/dη scaling may be a further indication of nonflow effects dominating at backward rapidity.

Original languageEnglish
Article number064905
JournalPhysical Review C
Volume96
Issue number6
DOIs
Publication statusPublished - 2017 Dec 26

Bibliographical note

Publisher Copyright:
© 2017 American Physical Society.

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Measurements of azimuthal anisotropy and charged-particle multiplicity in d + Au collisions at s NN =200, 62.4, 39, and 19.6 GeV'. Together they form a unique fingerprint.

Cite this