TY - GEN
T1 - Measuring longitudinally dynamic cortex development in infants by reconstruction of consistent cortical surfaces
AU - Li, Gang
AU - Nie, Jingxin
AU - Wang, Li
AU - Shi, Feng
AU - Gilmore, John H.
AU - Lin, Weili
AU - Shen, Dinggang
PY - 2013
Y1 - 2013
N2 - Quantitative measurement of dynamic cortex development during early postnatal stages is of great importance to understand early cortical structural and functional development. Conventional methods usually independently reconstruct cortical surfaces of longitudinal images from the same infant, which often generates longitudinally-inconsistent cortical surfaces and leads to inconsistence in cortex development measurement. This paper aims to address this problem by presenting a method to reconstruct consistent cortical surfaces from longitudinal brain MR images in the first-year infants for accurate and consistent measurement of dynamic cortex development. Specifically, longitudinal development of the inner cortical surface is first modeled by a deformable sheet with elasto-plasticity property to establish longitudinally smooth correspondences of inner cortical surfaces. Then, the modeled longitudinal inner cortical surfaces are jointly deformed to locate inner and outer cortical surfaces with a spatial-temporal deformable surface. The method has been applied on 10 infants, each with 5 or 6 scans acquired at every 3 months from birth. Experimental results show that our method can accurately and consistently reconstruct dynamic cortical surfaces from longitudinal infant images, with the average surface distance as low as 0.2mm. By using our method, we can quantitatively characterize longitudinally dynamic cortical thickness development in the first-year infants.
AB - Quantitative measurement of dynamic cortex development during early postnatal stages is of great importance to understand early cortical structural and functional development. Conventional methods usually independently reconstruct cortical surfaces of longitudinal images from the same infant, which often generates longitudinally-inconsistent cortical surfaces and leads to inconsistence in cortex development measurement. This paper aims to address this problem by presenting a method to reconstruct consistent cortical surfaces from longitudinal brain MR images in the first-year infants for accurate and consistent measurement of dynamic cortex development. Specifically, longitudinal development of the inner cortical surface is first modeled by a deformable sheet with elasto-plasticity property to establish longitudinally smooth correspondences of inner cortical surfaces. Then, the modeled longitudinal inner cortical surfaces are jointly deformed to locate inner and outer cortical surfaces with a spatial-temporal deformable surface. The method has been applied on 10 infants, each with 5 or 6 scans acquired at every 3 months from birth. Experimental results show that our method can accurately and consistently reconstruct dynamic cortical surfaces from longitudinal infant images, with the average surface distance as low as 0.2mm. By using our method, we can quantitatively characterize longitudinally dynamic cortical thickness development in the first-year infants.
KW - infant cortical thickness development
KW - infant longitudinal cortical surfaces
UR - http://www.scopus.com/inward/record.url?scp=84881631340&partnerID=8YFLogxK
U2 - 10.1109/ISBI.2013.6556790
DO - 10.1109/ISBI.2013.6556790
M3 - Conference contribution
AN - SCOPUS:84881631340
SN - 9781467364546
T3 - Proceedings - International Symposium on Biomedical Imaging
SP - 1380
EP - 1383
BT - ISBI 2013 - 2013 IEEE 10th International Symposium on Biomedical Imaging
T2 - 2013 IEEE 10th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2013
Y2 - 7 April 2013 through 11 April 2013
ER -