Abstract
Machine reading comprehension helps machines learn to utilize most of the human knowledge written in the form of text. Existing approaches made a significant progress comparable to human-level performance, but they are still limited in understanding, up to a few paragraphs, failing to properly comprehend lengthy document. In this paper, we propose a novel deep neural network architecture to handle a long-range dependency in RC tasks. In detail, our method has two novel aspects: (1) an advanced memory-augmented architecture and (2) an expanded gated recurrent unit with dense connections that mitigate potential information distortion occurring in the memory. Our proposed architecture is widely applicable to other models. We have performed extensive experiments with well-known benchmark datasets such as TriviaQA, QUASAR-T, and SQuAD. The experimental results demonstrate that the proposed method outperforms existing methods, especially for lengthy documents.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 |
Editors | Ellen Riloff, David Chiang, Julia Hockenmaier, Jun'ichi Tsujii |
Publisher | Association for Computational Linguistics |
Pages | 2131-2140 |
Number of pages | 10 |
ISBN (Electronic) | 9781948087841 |
Publication status | Published - 2020 Jan 1 |
Event | 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 - Brussels, Belgium Duration: 2018 Oct 31 → 2018 Nov 4 |
Publication series
Name | Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 |
---|
Conference
Conference | 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 |
---|---|
Country/Territory | Belgium |
City | Brussels |
Period | 18/10/31 → 18/11/4 |
Bibliographical note
Publisher Copyright:© 2018 Association for Computational Linguistics
ASJC Scopus subject areas
- Computational Theory and Mathematics
- Computer Science Applications
- Information Systems