TY - CONF
T1 - Meta learning for unsupervised clustering
AU - Kim, Han Ul
AU - Koh, Yeong Jun
AU - Kim, Chang Su
N1 - Funding Information:
This work was supported by 'The Cross-Ministry Giga KOREA Project' grant funded by the Korea government (MSIT) (No. GK18P0200, Development of 4D reconstruction and dynamic deformable action model based hyperrealistic service technology), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2018R1A2B3003896).
Funding Information:
This work was supported by ‘The Cross-Ministry Giga KOREA Project’ grant funded by the Korea government (MSIT) (No. GK18P0200, Development of 4D reconstruction and dynamic deformable action model based hyperrealistic service technology), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2018R1A2B3003896).
Publisher Copyright:
© 2019. The copyright of this document resides with its authors.
PY - 2020
Y1 - 2020
N2 - Learning an embedding space is essential in clustering. Deep learning has been used recently for this purpose, yielding impressive clustering results. However, it remains challenging to discover clusters in small data, which are insufficient to train deep networks. To address this challenge, we adopt the meta learning strategy, which learns to learn new tasks efficiently. We propose a novel meta learner, called MLC-Net, which mimics numerous clustering tasks during the training to learn an effective embedding space for new clustering tasks. MLC-Net has three building blocks: encoder, centroid, and prediction blocks. The encoder block transforms input patterns into an embedding space, while the centroid block estimates a representative feature for each cluster, called pseudo-centroid. It makes the embedding space more effective and more reliable, by learning an embedding space and a pseudo-centroid estimator jointly. Extensive experimental results on the Omniglot, MNIST, and Mini-ImageNet datasets demonstrate that MLC-Net achieves the state-of-the-art unsupervised clustering, as well as few-shot classification, performances.
AB - Learning an embedding space is essential in clustering. Deep learning has been used recently for this purpose, yielding impressive clustering results. However, it remains challenging to discover clusters in small data, which are insufficient to train deep networks. To address this challenge, we adopt the meta learning strategy, which learns to learn new tasks efficiently. We propose a novel meta learner, called MLC-Net, which mimics numerous clustering tasks during the training to learn an effective embedding space for new clustering tasks. MLC-Net has three building blocks: encoder, centroid, and prediction blocks. The encoder block transforms input patterns into an embedding space, while the centroid block estimates a representative feature for each cluster, called pseudo-centroid. It makes the embedding space more effective and more reliable, by learning an embedding space and a pseudo-centroid estimator jointly. Extensive experimental results on the Omniglot, MNIST, and Mini-ImageNet datasets demonstrate that MLC-Net achieves the state-of-the-art unsupervised clustering, as well as few-shot classification, performances.
UR - http://www.scopus.com/inward/record.url?scp=85087339240&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:85087339240
T2 - 30th British Machine Vision Conference, BMVC 2019
Y2 - 9 September 2019 through 12 September 2019
ER -