TY - JOUR
T1 - Metal-free, polyether-mediated H2-release from ammonia borane
T2 - Roles of hydrogen bonding interactions in promoting dehydrogenation
AU - Kim, Yongmin
AU - Baek, Hyunjae
AU - Lee, Jin Hee
AU - Yeo, Shinyoung
AU - Kim, Kibum
AU - Hwang, Son Jong
AU - Eun, Bit
AU - Nam, Suk Woo
AU - Lim, Tae Hoon
AU - Yoon, Chang Won
PY - 2013/12/7
Y1 - 2013/12/7
N2 - Polyetheral additives were found to be efficient promoters to enhance the rate of H2-release from ammonia borane (AB) at various temperatures. In particular, tetraethylene glycol dimethyl ether (T4EGDE, 29 wt% relative to AB + T4EGDE) exhibited significantly improved activities for AB dehydrogenation, with the material-based hydrogen storage capacity of 10.3 wt% at 125 °C within 40 min. In situ FT-IR spectroscopy indicated the formation of B-(cyclodiborazanyl)amino-borohydride (BCDB), borazine, and μ-aminodiborane as gaseous byproducts. In addition, 11B nuclear magnetic resonance (NMR) spectroscopy further revealed that diammoniate of diborane (DADB) was initially formed to give polyaminoborane as liquid and/or solid spent-fuel, consistent with previous reports. Density Functional Theory (DFT) calculations suggested that hydrogen bonding interactions between AB and a polyetheral promoter initially played an important role in increasing the reactivity of B-H bonds of AB by transferring electron density from oxygen atoms of the promoter into B-H bonds of AB. These partially activated, hydridic B-H bonds were proposed to help promote the formation of diammoniate of diborane (DADB), which is considered as a reactive intermediate, eventually enhancing the rate of H2-release from AB. In addition, our in situ solid state 11B magic angle spinning (MAS) NMR measurements further confirmed that the rate of DADB formation from AB with a small quantity of T4EGDE was found to be much faster than that of pristine AB even at 50 °C. This metal-free method for H2-release from AB with an added, small quantity of polyethers would be helpful to develop feasible hydrogen storage systems for long-term fuel cell applications.
AB - Polyetheral additives were found to be efficient promoters to enhance the rate of H2-release from ammonia borane (AB) at various temperatures. In particular, tetraethylene glycol dimethyl ether (T4EGDE, 29 wt% relative to AB + T4EGDE) exhibited significantly improved activities for AB dehydrogenation, with the material-based hydrogen storage capacity of 10.3 wt% at 125 °C within 40 min. In situ FT-IR spectroscopy indicated the formation of B-(cyclodiborazanyl)amino-borohydride (BCDB), borazine, and μ-aminodiborane as gaseous byproducts. In addition, 11B nuclear magnetic resonance (NMR) spectroscopy further revealed that diammoniate of diborane (DADB) was initially formed to give polyaminoborane as liquid and/or solid spent-fuel, consistent with previous reports. Density Functional Theory (DFT) calculations suggested that hydrogen bonding interactions between AB and a polyetheral promoter initially played an important role in increasing the reactivity of B-H bonds of AB by transferring electron density from oxygen atoms of the promoter into B-H bonds of AB. These partially activated, hydridic B-H bonds were proposed to help promote the formation of diammoniate of diborane (DADB), which is considered as a reactive intermediate, eventually enhancing the rate of H2-release from AB. In addition, our in situ solid state 11B magic angle spinning (MAS) NMR measurements further confirmed that the rate of DADB formation from AB with a small quantity of T4EGDE was found to be much faster than that of pristine AB even at 50 °C. This metal-free method for H2-release from AB with an added, small quantity of polyethers would be helpful to develop feasible hydrogen storage systems for long-term fuel cell applications.
UR - http://www.scopus.com/inward/record.url?scp=84887009304&partnerID=8YFLogxK
U2 - 10.1039/c3cp52591k
DO - 10.1039/c3cp52591k
M3 - Article
C2 - 24068365
AN - SCOPUS:84887009304
SN - 1463-9076
VL - 15
SP - 19584
EP - 19594
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 45
ER -