Abstract
Electrode materials exhibiting nanostructural design, high surface area, tunable pore size, and efficient ion diffusion/transportation are essential for achieving improved electrochemical performance. In this study, we successfully prepared cobalt phosphide and cobalt nanoparticles embedded into nitrogen-doped nanoporous carbon (CoP-CoNC/CC) using a simple precipitation method followed by pyrolysis-phosphatization. Subsequently, we employed CoP-CoNC/CC as the electrode for supercapacitor applications. Notably, the resultant CoP-CoNC/CC displayed a high surface area with tunable porosity. Based on the benefits of the CoP in CoNC/CC, improved electrochemical performance was achieved with a specific capacitance of 975 F g-1 at 1 mA cm-2 in a 2 M KOH electrolyte. The assembled hybrid supercapacitor using CoP-CoNC/CC (positive electrode) and activated carbon (AC) (negative electrode) exhibited a specific capacitance of 144 F g-1, a specific energy of 39.2 W h kg-1 at 1960 W kg-1 specific power, with better cyclic stability. The higher performance can be attributed to the synergetic effect between CoP, Co metal, and the nitrogen-doped nanoporous carbon in three-dimensional carbon cloth (CC). These excellent properties make CoP-CoNC/CC a promising electrode for developing future energy-storage devices.
Original language | English |
---|---|
Pages (from-to) | 1157-1166 |
Number of pages | 10 |
Journal | Dalton Transactions |
Volume | 49 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2020 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry.
ASJC Scopus subject areas
- Inorganic Chemistry