TY - JOUR
T1 - Metal sulfoselenide solid solution embedded in porous hollow carbon nanospheres as effective anode material for potassium-ion batteries with long cycle life and enhanced rate performance
AU - Park, Gi Dae
AU - Park, Jin Sung
AU - Kim, Jin Koo
AU - Kang, Yun Chan
N1 - Funding Information:
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A2C2088047 and 2020R1A4A2002854).
Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/1/15
Y1 - 2022/1/15
N2 - Recently, potassium-ion batteries (KIBs) have been investigated as promising alternative to lithium-ion batteries, and significant advances in terms of new compositions and nanostructures are being made. In this regard, the strategy of introducing hetero-anions into metal compounds has been considered as an innovative method. After the initial electrochemical reaction, hetero-anion metal compounds are divided into individual metal compounds to form heterointerfaces, thus enhancing the electrochemical kinetics. Herein, a new strategy for the synthesis of metal sulfoselenide solid solution embedded in the porous shells of hollow carbon nanospheres is introduced; here, porous hollow carbon nanospheres are utilized as a co-infiltrating matrix to create electrode material with robust stability and high conductivity. The conversion reaction mechanism of metal sulfoselenide with potassium ions was investigated through systematic structural and electrochemical analyses, where metal sulfide/metal selenide hetero-interface was formed after the initial cycle. As anode for KIBs, CoSSe–C exhibited impressive electrochemical properties including particularly long cycle life (286 mA h g−1 for 3000 cycles at 1.5 A g−1) and excellent rate capability (185 mA h g−1 at 5.0 A g−1).
AB - Recently, potassium-ion batteries (KIBs) have been investigated as promising alternative to lithium-ion batteries, and significant advances in terms of new compositions and nanostructures are being made. In this regard, the strategy of introducing hetero-anions into metal compounds has been considered as an innovative method. After the initial electrochemical reaction, hetero-anion metal compounds are divided into individual metal compounds to form heterointerfaces, thus enhancing the electrochemical kinetics. Herein, a new strategy for the synthesis of metal sulfoselenide solid solution embedded in the porous shells of hollow carbon nanospheres is introduced; here, porous hollow carbon nanospheres are utilized as a co-infiltrating matrix to create electrode material with robust stability and high conductivity. The conversion reaction mechanism of metal sulfoselenide with potassium ions was investigated through systematic structural and electrochemical analyses, where metal sulfide/metal selenide hetero-interface was formed after the initial cycle. As anode for KIBs, CoSSe–C exhibited impressive electrochemical properties including particularly long cycle life (286 mA h g−1 for 3000 cycles at 1.5 A g−1) and excellent rate capability (185 mA h g−1 at 5.0 A g−1).
KW - Conversion mechanism
KW - Heterostructure, Carbon nanocomposite
KW - Metal sulfoselenide
KW - Potassium-ion batteries
UR - http://www.scopus.com/inward/record.url?scp=85109150448&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2021.131051
DO - 10.1016/j.cej.2021.131051
M3 - Article
AN - SCOPUS:85109150448
SN - 1385-8947
VL - 428
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 131051
ER -