Metallic nanosponges for energy storage and conversion applications

N. R. Hemanth, Ranjit D. Mohili, Monika Patel, Arvind H. Jadhav, Kwangyeol Lee, Nitin K. Chaudhari

Research output: Contribution to journalReview articlepeer-review

7 Citations (Scopus)


In order to meet the current energy storage demands, the rational design of novel nanostructured materials is crucial for the improvement of electrochemical storage and conversion performance. Nanostructured materials have shown promising results in various energy harvesting systems, owing to their multifunctional properties such as a large active surface area, mechanical strength, catalytic ability, excellent ion diffusion, and electronic conductivity. To date, the library of nanostructured materials consists of diverse compositions ranging from oxides, dichalcogenides, carbides to graphene-based and lithium alloys with various morphologies such as zero-dimensional (0D), 1D, 2D and 3D nanomaterials. In particular, nanosponges have exhibited unusual three-dimensional architecture that provides rich surface defects and excellent structural stability resulting in improved catalytic activity. Additionally, the large conducting surface, electronic conductivity and pronounced crystalline phase stability of nanosponges have been utilized to improve the electrode performance drastically. Moreover, the unique sponge-like metallic porous network not only reduces the overall weight of the device but also decreases the consumption of metal usage. In this context, this review particularly highlights the recent progress in the synthesis and properties of noble metals and other metal-based sulphide, oxide, hydroxide and phosphide nanosponges, and their application in electrochemical storage and conversion devices.

Original languageEnglish
Pages (from-to)14221-14246
Number of pages26
JournalJournal of Materials Chemistry A
Issue number27
Publication statusPublished - 2022 May 31

Bibliographical note

Funding Information:
This study was financially supported by the Department of Science and Technology (DST) under the joint India-Korea bilateral project (INT/Korea/P-52) and by the National Research Foundation of Korea (NRF-2020K1A3A1A19088726 & NRF-2019R1A6A1A11044070). The authors gratefully acknowledge the financial support by the Central Power Research Institute (CPRI), Bangalore (RSOP/21-26/GD/6) and Pandit Deendayal Energy University (PDEU) under the Start-up grant ORSP/R&D/PDPU/2021/NC00/R0069 and RM acknowledge the DST Junior Research Fellowship (Award Number-RO062).

Publisher Copyright:
© 2022 The Royal Society of Chemistry.

ASJC Scopus subject areas

  • General Chemistry
  • Renewable Energy, Sustainability and the Environment
  • General Materials Science


Dive into the research topics of 'Metallic nanosponges for energy storage and conversion applications'. Together they form a unique fingerprint.

Cite this