MetricUNet: Synergistic image- and voxel-level learning for precise prostate segmentation via online sampling

Kelei He, Chunfeng Lian, Ehsan Adeli, Jing Huo, Yang Gao, Bing Zhang, Junfeng Zhang, Dinggang Shen

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Fully convolutional networks (FCNs), including UNet and VNet, are widely-used network architectures for semantic segmentation in recent studies. However, conventional FCN is typically trained by the cross-entropy or Dice loss, which only calculates the error between predictions and ground-truth labels for pixels individually. This often results in non-smooth neighborhoods in the predicted segmentation. This problem becomes more serious in CT prostate segmentation as CT images are usually of low tissue contrast. To address this problem, we propose a two-stage framework, with the first stage to quickly localize the prostate region, and the second stage to precisely segment the prostate by a multi-task UNet architecture. We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network. Therefore, the proposed network has a dual-branch architecture that tackles two tasks: (1) a segmentation sub-network aiming to generate the prostate segmentation, and (2) a voxel-metric learning sub-network aiming to improve the quality of the learned feature space supervised by a metric loss. Specifically, the voxel-metric learning sub-network samples tuples (including triplets and pairs) in voxel-level through the intermediate feature maps. Unlike conventional deep metric learning methods that generate triplets or pairs in image-level before the training phase, our proposed voxel-wise tuples are sampled in an online manner and operated in an end-to-end fashion via multi-task learning. To evaluate the proposed method, we implement extensive experiments on a real CT image dataset consisting 339 patients. The ablation studies show that our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss. And the comparisons show that the proposed method outperforms the state-of-the-art methods by a reasonable margin.

Original languageEnglish
Article number102039
JournalMedical Image Analysis
Volume71
DOIs
Publication statusPublished - 2021 Jul

Bibliographical note

Publisher Copyright:
© 2021 Elsevier B.V.

Keywords

  • Contrast learning
  • Fully convolutional networks
  • Metric learning
  • Prostate cancer
  • Sampling
  • Triplet

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Computer Vision and Pattern Recognition
  • Health Informatics
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'MetricUNet: Synergistic image- and voxel-level learning for precise prostate segmentation via online sampling'. Together they form a unique fingerprint.

Cite this