MEVG: Multi-event Video Generation with Text-to-Video Models

Gyeongrok Oh, Jaehwan Jeong, Sieun Kim, Wonmin Byeon, Jinkyu Kim, Sungwoong Kim, Sangpil Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We introduce a novel diffusion-based video generation method, generating a video showing multiple events given multiple individual sentences from the user. Our method does not require a large-scale video dataset since our method uses a pre-trained diffusion-based text-to-video generative model without a fine-tuning process. Specifically, we propose a last frame-aware diffusion process to preserve visual coherence between consecutive videos where each video consists of different events by initializing the latent and simultaneously adjusting noise in the latent to enhance the motion dynamic in a generated video. Furthermore, we find that the iterative update of latent vectors by referring to all the preceding frames maintains the global appearance across the frames in a video clip. To handle dynamic text input for video generation, we utilize a novel prompt generator that transfers course text messages from the user into the multiple optimal prompts for the text-to-video diffusion model. Extensive experiments and user studies show that our proposed method is superior to other video-generative models in terms of temporal coherency of content and semantics. Video examples are available on our project page: https://kuai-lab.github.io/eccv2024mevg.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages401-418
Number of pages18
ISBN (Print)9783031727740
DOIs
Publication statusPublished - 2025
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 2024 Sept 292024 Oct 4

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15101 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period24/9/2924/10/4

Bibliographical note

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

Keywords

  • Diffusion model
  • Multi-event video generation
  • Training-free

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'MEVG: Multi-event Video Generation with Text-to-Video Models'. Together they form a unique fingerprint.

Cite this